Concept of Size-Dependent Atomic Interaction Energies for Solid Nanomaterials: Thermodynamic and Diffusion Aspects

Aram S. Shirinyan

Physicochemical Materials Science Centre of the Taras Shevchenko Kyiv National University and the National Academy of Science of Ukraine, 64 Volodymyrska Str., 01601 Kyiv, Ukraine

Received: 27.01.2015. Download: PDF

Energy-related problems of solid nanoparticles and nanoscale materials concerning their stability and structure are investigated with a specifically targeting on nanocrystalline metallic systems. The new concept based on the atomic hypothesis about the size dependence of nearest atom—atom interaction energy and co-ordinated actions of atoms is offered. The verification is done for metallic thin films and nanoparticles on the basis of experimental results, theoretical approach, and molecular static simulations. As shown, for nanomaterials, the concepts of size-dependent interatomic interaction energies can be used for description of thermodynamic and kinetic properties.

Key words: atom—atom interaction, size effect, thermodynamic properties, diffusion in nanomaterials, nanocrystalline structures.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i04/0475.html

DOI: https://doi.org/10.15407/mfint.37.04.0475

PACS: 05.70.Ce, 34.20.Cf, 61.46.Hk, 64.75.Jk, 66.30.Pa, 81.07.Bc, 82.60.Qr

Citation: Aram S. Shirinyan, Concept of Size-Dependent Atomic Interaction Energies for Solid Nanomaterials: Thermodynamic and Diffusion Aspects, Metallofiz. Noveishie Tekhnol., 37, No. 4: 475—486 (2015)


REFERENCES
  1. Ph. Buffat and J. P. Borel, Phys. Rev. A, 13: 2287 (1976). Crossref
  2. A. S. Shirinyan and V. A. Makara, Nanosistemi, Nanomateriali, Nanotehnologii, 8: 223 (2010) (in Ukrainian).
  3. Q. S. Mei and K. Lu, Prog. Mat. Sci., 52: 1175 (2007). Crossref
  4. P. Pawlow, Z. für Phys. Chem., 65: 1 (1909). Crossref
  5. K. K. Nanda, S. N. Sahu, and S. N. Behera, Phys. Rev. A, 66: 013208 (2002). Crossref
  6. M. Wautelet, J. Phys. D: Appl. Phys., 24: 343 (1991). Crossref
  7. E. L. Nagaev, Uspekhi Fizicheskikh Nauk, 162: 49 (1992) (in Russian). Crossref
  8. F. Baletto and R. Ferrando, Rev. Mod. Phys., 77: 371 (2005). Crossref
  9. H. Bei, S. Shim, G. M. Pharr, and E. P. George, Acta Mat., 56: 4762(2008). Crossref
  10. G. Richter, K. Hillerich, D. S. Gianola, R. Monig, O. Kraft, and C. A. Volkert, Nano Lett., 9: 3048 (2009). Crossref
  11. M. B. Lowry, D. Kiener, M. M. Le Blank, C. Chisholm, J. N. Florando, J. W. Morris, and A. M. Minor, Acta Mat., 58: 5160 (2010). Crossref
  12. A. S. Shirinyan and M. Wautelet, Nanotech., 15: 1720 (2004). Crossref
  13. H. Ulbricht, J. Schmelzer, R. Mahnke, and F. Schweitzer, Thermodynamics of Finite Systems and Kinetics of First-Order Phase Transitions (Leipzig: BSB Teubner: 1988). Crossref
  14. A. I. Rusanov, Fazovye Ravnovesiya i Poverkhnostnye Yavleniya (Phase Equilibriums and Surface Phenomena) (Leningrad: Chemistry: 1967) (in Russian).
  15. A. S. Shirinyan, A. M. Gusak, and M. Wautelet, Acta Mat., 53: 5025 (2005). Crossref
  16. A. S. Shirinyan, M. Wautelet, and Y. Belogorodsky, J. Phys.: Cond. Mat., 18: 2537 (2006). Crossref
  17. J. Weissmuller, Nanostr. Mat., 3: 261 (1993). Crossref
  18. F. Liu and R. Kirchheim, Scr. Mat., 51: 521 (2004). Crossref
  19. H. A. Murdoch and C. A. Schuh, Acta Mat., 61: 2121 (2013). Crossref
  20. D. Xie, M. P. Wang, and W. H. Qi, J. Phys.: Cond. Matt., 16: L401 (2004). Crossref
  21. A. I. Karasevskii, Eur. Phys. J. B, 86: 123 (2013). Crossref
  22. A. Fiegenbaum and A. Karnani, Strat. Manag. J., 12: 101 (1991). Crossref
  23. C. Wing and M. Yiu, Small Business Economics, 9: 287 (1997). Crossref
  24. S. Nakagawa and I. C. Cuthill, Biol. Rev. Camb. Philos. Soc., 82: 591 (2007). Crossref
  25. V. E. Lee and S. Loeb, Am. Educ. Res. J., 37: 3 (2000). Crossref
  26. W. B. Moody, R. B. Bausell, and J. R. Jenkins, J. Res. Math. Educ., 4: 170 (1973). Crossref
  27. L. H. Liang and Q. Jiang, Acta Mat., 53: 3305 (2005). Crossref
  28. L. H. Liang, D. Liu, and Q. Jiang, Nanotech., 14: 438 (2003). Crossref
  29. Q. Jiang, H. M. Lu, and M. Zhao, J. Phys.: Cond. Matt., 16: 521 (2004). Crossref
  30. N. D. Lisgarten, S. J. Peppiatt, and J. R. Samblest, J. Phys. C: Solid State Phys., 7: 2263 (1974). Crossref
  31. P. N. Denbigh and R. B. Marcus, J. Appl. Phys., 37: 4325 (1966). Crossref
  32. W. H. Qi and M. P. Wang, J. Nanopart. Res., 7: 51 (2005). Crossref
  33. M. T. Gladgkikh, Poverkhnostnye Yavleniya i Fazovye Prevrashcheniya v Condensirovannykh Plenkakh (Surface Phenomena and Phase Transformations in Condensed Films) (Kharkiv: Kharkiv Karazin University: 2004) (in Russian).
  34. P. M. Morse, Phys. Rev., 34: 57 (1929). Crossref
  35. L. A. Girifalco and V. G. Weizer, Phys. Rev., 114: 687 (1959). Crossref
  36. I. M. Torrens, Interatomic Potentials (New York: Academic Press: 1972).
  37. T. Yokoyama, K. Kobayashi, and T. Ohta, Phys. Rev. B, 53: 6111 (1996). Crossref
  38. I. V. Pirog, I. I. Nedosekina, I. A. Zarubin, and A. T. Shuvaev, J. Phys.: Cond. Matt., 14: 1825 (2002). Crossref
  39. J. W. Christian, Theory of Transformation in Metals and Alloys (New York: Pergamon Press: 1965).
  40. A. P. Sutton and J. Chen, Philos. Mag. Lett., 61: 139 (1990). Crossref
  41. B. D. Todd and R. M. Lynden-Bell, Surf. Sci., 281: 191 (1993). Crossref
  42. G. P. Purja Pun and Y. Mishin, Philos. Mag., 89: 3245 (2009). Crossref
  43. A. Shirinyan and Yu. Bilogorodskyy, Phys. Met. Metallog., 113: 823 (2012). Crossref
  44. A. S. Shirinyan and Yu. S. Bilogorodskyy, Metallofiz. Noveishie Tekhnol., 32, No. 11: 1493 (2010) (in Russian).
  45. T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker, and L. Kacprzak, Binary Alloy Phase Diagram (New York: ASM: 1992).
  46. M. Brown and M. F. Ashby, Acta Metallurg., 28: 1085 (1980). Crossref
  47. Y. Chen and C. A. Schuh, J. Appl. Phys., 101: 063524 (2007). Crossref
  48. A. S. Shirinyan, Phys. Solid State, 52: 1267 (2010). Crossref