Evolution of Phase Composition and Microstructure upon Synthesis of Zr—Sn Alloy from Zirconium Hydride and Tin Powders

D. G. Savvakin$^{1}$, D. V. Oryshych$^{2}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine

Received: 28.01.2015. Download: PDF

Microstructure and density evolution as well as thermal effects are investigated upon synthesis of Zr—1.5% Sn alloy from powder blends of zirconium-hydride and tin particles. Melting of tin particles at the initial stage of heating results in increased porosity, but does not accelerate chemical homogenization of powder system. Formation of solid intermetallics is accelerated at increased temperatures of 550—800°C due to hydrogen desorption and activation of zirconium matrix. Solid-state homogenization and sintering processes at higher temperatures produce homogeneous tin solution in zirconium. Particle sizes, temperature and time of sintering provide formation of low-porous (with relative density of more than 97%) chemically and microstructurally homogeneous material. Mechanical properties of fabricated alloy are at the level of properties of corresponding material produced with conventional ingot technology.

Key words: microstructure, mechanical properties, chemical homogenization, zirconium hydride, tin.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i04/0559.html

DOI: https://doi.org/10.15407/mfint.37.04.0559

PACS: 61.43.Gt, 61.66.Dk, 64.70.dj, 64.70.kd, 81.20.Ev, 81.30.Bx, 81.40.Ef

Citation: D. G. Savvakin and D. V. Oryshych, Evolution of Phase Composition and Microstructure upon Synthesis of Zr—Sn Alloy from Zirconium Hydride and Tin Powders, Metallofiz. Noveishie Tekhnol., 37, No. 4: 559—569 (2015)


REFERENCES
  1. S. Yu. Zavodchikov, L. V. Zuev, and V. A. Kotrekhov, Metallovedcheskie Voprosy Proizvodstva Izdeliy iz Splavov Tsirkoniya (Metal Science Problems of the Products from Zirconium Alloys) (Moscow: Nauka: 2012) (in Russian).
  2. O. M. Ivasishin, D. G. Savvakin, and M. M. Gumenyak, Metallofiz. Noveishie Tekhnol., 33, No. 7: 899 (2011) (in Russian).
  3. D. G. Savvakin and M. M. Gumenyak, Metallofiz. Noveishie Tekhnol., 35, No. 3: 349 (2013) (in Russian).
  4. J. P. Abriata, J. C. Bolcich, and D. Arias, Bulletin of Alloy Phase Diagrams, 4, No. 2: 147 (1983). Crossref
  5. M. Dahms, G. Leitner, W. Poessnecker, S. Schultrich, and F. Schmelzer, Z. Metallkd., 84, No. 5: 351 (1993).
  6. V. V. Skorokhod, Yu. M. Solonin, and I. V. Uvarova, Khimicheskie, Diffuzionnye i Reologicheskie Protsessy v Tekhnologii Poroshkovykh Materialov (Chemical, Diffusion and Rheological Processes in Powder Materials Technology) (Kiev: Naukova Dumka: 1990) (in Russian).
  7. A. G. Kostornov, Materialovedenie Dispersnykh i Poristykh Metallov i Splavov (Material Science of Disperse and Porous Metals and Alloys). Vol. 1 (Kiev: Naukova Dumka: 2002) (in Russian).
  8. T. Studnitzky and R. Schmid-Fetser, Z. Metallkd., 93, No. 9: 894 (2002). Crossref
  9. V. A. Goltsov, N. I. Timofeev, and I. Yu. Machikina, Dokl. AN USSR, 235, No. 5: 1060 (1977) (in Russian).
  10. N. Subasic, Calphad, 22, No. 2: 157 (1998). Crossref
  11. L. M. Howe and W. R. Thomas, J. Nuclear Materials, 2, No. 3: 248 (1960). Crossref
  12. O. H. Kwon, K. B. Eom, J. I. Kim, J. M. Suh, and K. L. Jeon, Nucl. Eng. Technol., 43, No. 1: 19 (2011). Crossref