Structural Modification of AD-1 Aluminium Alloy by the Method of Cold Rolling with Shift

V. M. Varyukhin, O. G. Pashinska, V. M. Tkachenko, V. V. Burkhovetskii, A. V. Zavdoveev

Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 72 R. Luxembourg Str., 83114 Donetsk, Ukraine

Received: 09.11.2014; final version - 08.12.2014. Download: PDF

The method of rolling with shift in comb-shaped calibres for a bar is developed in order to create the conditions of severe deformation in the processed AD-1 aluminium alloy. The method provides formation of a structural state with the controlled fraction of nanostructure. As shown, the rolling with shift results in intensive fragmentation of the structure and reduction of the anisotropy of the material properties in different sections of the billet, as compared to the conventional rolling.

Key words: structure, anisotropy, severe plastic deformation, rolling, EBSD-analysis, aluminium alloy.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i04/0571.html

DOI: https://doi.org/10.15407/mfint.37.04.0571

PACS: 61.72.Ff, 61.72.Hh, 61.72.Mm, 62.20.F-, 62.23.St, 81.20.Hy, 83.50.Uv

Citation: V. M. Varyukhin, O. G. Pashinska, V. M. Tkachenko, V. V. Burkhovetskii, and A. V. Zavdoveev, Structural Modification of AD-1 Aluminium Alloy by the Method of Cold Rolling with Shift, Metallofiz. Noveishie Tekhnol., 37, No. 4: 571—579 (2015)


REFERENCES
  1. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials: Production, Structure and Properties (Moscow: Akademkniga: 2007) (in Russian).
  2. V. M. Segal, Mater. Sci. Eng., A, 476, Nos. 1–2: 178 (2008). Crossref
  3. P. J. Apps, M. Berta, and P. B. Prangnell, Acta Mater., 53, No. 2: 499 (2005). Crossref
  4. E. A. El-Danaf, M. S. Soliman, A. A. Almajid, and M. M. El-Rayes, Mater. Sci. Eng. A, 458, Nos. 1–2: 226 (2007). Crossref
  5. E. A. El-Danaf, Mater. Design, 32, No. 7: 3838 (2011). Crossref
  6. Y. Beygelzimer, V. Varyukhin, D. Orlov, and S. Synkov, Twist Extrusion—Process for Deformation Accumulation (Donetsk: TEAN: 2003).
  7. M. M. Myshlyaev, M. M. Kulak, and E. G. Pashynskaya, Nanostructurnoe Materialovedenie, 8, No. 1: 217 (2010) (in Russian).
  8. V. M. Varyukhin, O. G. Pashinska, V. M. Tkachenko, and M. M. Myshlyaev, Metallofiz. Noveishie Tekhnol., 34, No. 12: 1655 (2012) (in Russian).
  9. E. Pashinska, V. Varyukhin, and S. Dobatkin, Emerging Materials Research, 2, No. 3: 121 (2013). Crossref
  10. Y. S. Kim, S. H. Kang, and D. H. Shin, Mater. Sci. Forum, 503–504: 681 (2006). Crossref
  11. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci., 53: 893 (2008). Crossref
  12. G. A. Salishev, O. R. Valiakhmetov, and R. M. Galeyev, J. Mater. Sci., 28: 2898 (1993). Crossref
  13. A. Gholinia, F. J. Humphreys, and P. B. Prangnell, Acta Mater., 50, No. 18: 4461 (2002). Crossref
  14. E. Pashinskaya, Physical and Mechanical Base of Structure Evolution at Combined Plastic Deformation (Donetsk: Veber: 2009).
  15. A. B. Lopes, F. Barlat, J. J. Gracio, J. F. Ferreira Duarte, and E. F. Rauch, Int. J. Plasticity, 19, No. 1: 1 (2003). Crossref
  16. E. G. Pashynskaya, M. M. Myshlyayev, V. N. Varyukhin, V. V. Stolyarov, S. A. Mironov, and V. M. Tkachenko, Bull. Russ. Acad. Sci.: Phys., 73, No. 9: 1249 (2009). Crossref
  17. V. M. Varyukhin, N. N. Belousov, O. G. Pashins'ka, and V. M. Tkachenko, Metallofiz. Noveishie Tekhnol., 27, No. 8: 1113 (2005) (in Russian).
  18. V. N. Varyukhin, E. G. Pashinskaya, V. M. Tkachenko, and M. M. Bilousov, Mater. Sci. Forum, 503–504: 591 (2006). Crossref
  19. E. G. Pashinskaya and A. A. Tolpa, Metally, No. 5: 85 (2004) (in Russian).
  20. E. V. Kozlov, A. N. Zhdanov, and N. A. Koneva, Phys. Mesomech., 11, Nos. 1–2: 42 (2008). Crossref
  21. V. M. Varyukhin, O. G. Pashinska, M. M. Myshlyayev, V. V. Stolyarov, V. M. Tkachenko, and I. I. Tyshchenko, Metallofiz. Noveishie Tekhnol., 31, No. 10: 1399 (2009) (in Russian).