The Fatigue Strength of AISI 430—304 Stainless Steels Welded by CO$_{2}$ Laser Beam Welding

U. Caligulu$^{1}$, M. Turkmen$^{2}$, A. Ozer$^{3}$, M. Taskin$^{1}$, M. Ozer$^{4}$

$^{1}$Firat University, Faculty of Technology, Department of Metallurgy and Materials Engineering, 23119 Elazig, Turkey
$^{2}$Kocaeli University, Hereke Vocational School, 41800 Kocaeli, Turkey
$^{3}$Gazi University, Technical Sciences Vocational School, 06500 Ankara, Turkey
$^{4}$Gazi University, Faculty of Technology, Department of Materials and Metallurgy, 06500 Ankara, Turkey

Received: 02.12.2014; final version - 16.04.2015. Download: PDF

In this study, the fatigue strength of AISI 430—304 stainless steels welded by CO$_{2}$ laser beam welding (LBW) is investigated. Laser welding experiments are carried under helium atmosphere at 2000, 2250 and 2500 W welding powers with 100 cm/min welding speed. The welding zones are examined by optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy analysis. Fatigue tests are performed using an axial fatigue test machine, and the fatigue strength is analysed drawing $S-N$ curves and critically observing fatigue fracture surfaces of the tested samples. The experimental results indicate that mechanical properties and microstructural features are affected significantly by welding power. The fatigue strength of CO$_{2}$ laser welded samples increase due to higher deep penetration in welding zone with increasing welding power in chosen conditions. The best properties are observed with the specimens welded at 2500 W heat input and 100 cm/min welding speed.

Key words: fatigue strength, welding zone, stainless steels, AISI 430, AISI 304, CO$_{2}$ LBW.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i06/0839.html

DOI: https://doi.org/10.15407/mfint.37.06.0839

PACS: 06.60.Vz, 42.62.Cf, 62.20.me, 62.20.mm, 81.20.Vj, 81.40.Np, 81.70.Bt

Citation: U. Caligulu, M. Turkmen, A. Ozer, M. Taskin, and M. Ozer, The Fatigue Strength of AISI 430—304 Stainless Steels Welded by CO$_{2}$ Laser Beam Welding, Metallofiz. Noveishie Tekhnol., 37, No. 6: 839—852 (2015)


REFERENCES
  1. L. Yi-Chun and Y. Ming-Huei, J. Mater. Process. Technol., 190: 102 (2007). Crossref
  2. M. Taskin, S. Ozan, and S. Kolukisa, Practical Metallography, 43: 293 (2006). Crossref
  3. S. Ozan, M. Taskin, and S. Kolukisa, Practical Metallography, 43: 575 (2006). Crossref
  4. A. Hascalik, E. Unal, and N. Ozdemir, J. Mater. Sci., 41: 3233 (2006). Crossref
  5. U. Caligulu, H. Dikbas, and M. Taskin, Gazi University J. Sci., 25: 35 (2012).
  6. P. Hussain and A. Isnin, J. Mater. Process. Technol., 113: 222 (2001). Crossref
  7. C.-C. Hsieh, D.-Y. Lin, M.-C. Chen, and W. Wu, Mater. Sci. Eng. A, 477: 328 (2008). Crossref
  8. W. Ertle and R. J. Rockwell, The Fabricator (May 15, 2001).
  9. B. S. Yilbas, M. Sami, J. Nickel, A. Coban, and S. A. M. Said, J. Mater. Process.Technol., 82: 13 (1998). Crossref
  10. B. S. Yilbas, S. Z. Shuja, A. Arif, and M.A. Gondal, J. Mater. Process. Technol., 135: 6 (2003). Crossref
  11. B. S. Yilbas, J. Mater. Process. Technol., 70: 264 (1997). Crossref
  12. E. Bayraktar, D. Kaplan, and B. S. Yilbas, J. Mater. Process. Technol., 204: 440 (2008). Crossref
  13. H. Guo Ming, Z. Jian, and L. Jian Qang, Mater. Design, 28: 240 (2007). Crossref
  14. K. Y. Benyounis, A. G. Olabi, and M. S. J. Hashmi, J. Mater. Process. Technol., 164—165: 978 (2005). Crossref
  15. Y. Cui and C. D. Lundin, Mater. Letters, 59: 2942 (2005). Crossref
  16. M. Vural and A. Akkus, J. Mater. Process. Technol., 153—154: 1 (2004). Crossref
  17. S. Y. Sirin, K. Sirin, and E. Kaluc, Mater. Characterization, 59: 351 (2008). Crossref
  18. L. W. Tsay, M. C. Young, and C. Chen, Corrosion Sci., 45: 1985 (2003). Crossref
  19. A.-M. El-Batahgy, Mater. Letters, 32: 155 (1997). Crossref
  20. M. Taskin, U. Caligulu, and S. Kolukisa, Practical Metallography, 46: 598 (2009). Crossref
  21. U. Caligulu, M. Taskin, H. Dikbas, and A. K. Gur, 1st Intern. Conference on Welding Technologies (June 11—13, 2009) (Ankara: Gazi University: 2009), p. 674.
  22. F. Curcio, G. Daurelio, F. M. C. Minutolo, and F. Caiazzo, J. Mater. Process. Technol., 175: 83 (2006). Crossref
  23. A. Zambon, P. Ferro, and F. Bonollo, Mater. Sci. Eng. A, 424: 117 (2006). Crossref
  24. P. Bertrand, I. Smurov, and G. Grevey, Appl. Surf. Sci., 168: 182 (2000). Crossref
  25. A.-M. El-Batahgy, Mater. Lett., 32: 155 (1997). Crossref
  26. F. M. Ghaini, M. J. Hamedi, M. J. Torkamany, and J. Sabbaghzadeh, Scr. Mater., 56: 955 (2007). Crossref
  27. M. Vural, A. Akkus, and B. Eryurek, J. Mater. Process. Technol., 176: 127 (2006). Crossref
  28. T. Yuri, T. Ogata, M. Saito, and Y. Hirayama, Cryogenics, 41: 475 (2001). Crossref
  29. C. Jang, P.-Y. Cho, M. Kim, S.-J. Oh, and J.-S. Yang, Mater. Design, 31: 1862 (2010). Crossref
  30. E. Taban, E. Deleu, A. Dhooge, and E. Kaluc, Mater. Design, 30: 1193 (2009). Crossref
  31. A. Karaaslan, N. Sonmez, and A. Topuz, 2nd Intern. Welding Technol. Conference (June, 1998, Istanbul, Turkey) (in Turkish).
  32. M. Sahin, Mater. Design, 28: 2244 (2007). Crossref
  33. M. Sahin and H. E. Akata, Indust. Lubricate Tribol., No. 56: 2 (2004).
  34. A. Sik, Fatigue Test Machine, Patent 2008/04670 (Gazi University, Faculty of Architecture, Department of Industrial Design, Ankara, Turkey: 2008) (in Turkish).
  35. E. S. Kayali, C. Ensari, and F. Dikec, Metalik Malzemelerin Mekanik Deneyleri (ITU Library: 1983) (in Turkish).
  36. R. Konig and N. Otmanboluk, 2nd Intern. Welding Technol. Conference (June, 1998, Istanbul, Turkey).