Dispersion Kinetics of the Palladium and Platinum Nanofilms, Which Were Deposited on the Oxide Materials, under Annealing in Vacuum

Yu. V. Naidich, І. І. Gab, Т. V. Stetsyuk, B. D. Kоstyuk, S. I. Martynuyk

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 28.05.2015. Download: PDF

The dispersion kinetics of palladium and platinum nanofilms of 100 nm thickness deposited onto oxide substrate (quartz glass, leucosapphire, ZrO$_{2}$-based ceramics) and annealed in a vacuum at 1000—1600°C for different exposure times at each temperature is investigated. Kinetic curves of dispersion process in these films are plotted and recommendations for practical application of them are also given.

Key words: platinum, palladium, nanofilm, disintegration, kinetics.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i09/1225.html

DOI: https://doi.org/10.15407/mfint.37.09.1225

PACS: 68.35.B-, 68.35.Dv, 68.55.-a, 68.60.Dv, 81.05.Je, 81.16.-c, 81.40.Ef

Citation: Yu. V. Naidich, І. І. Gab, Т. V. Stetsyuk, B. D. Kоstyuk, and S. I. Martynuyk, Dispersion Kinetics of the Palladium and Platinum Nanofilms, Which Were Deposited on the Oxide Materials, under Annealing in Vacuum, Metallofiz. Noveishie Tekhnol., 37, No. 9: 1225—1237 (2015) (in Ukrainian)


REFERENCES
  1. V. N. Batygin, I. I. Metelkin, and A. M. Reshetnikov, Vacuumnoplotnaya Keramika i Ee Spai s Metallami (Moscow: Energiya: 1982) (in Russian).
  2. I. I. Metelkin, M. A. Pavlov, and N. V. Pozdeeva, Svarka Keramiki s Metallami (Moscow: Metallurgiya: 1977) (in Russian).
  3. M. L. Shalz, B. J. Dalgleish, A. P. Tomsia et al., J. Mater. Sci., 29, No. 14: 3678 (1994). Crossref
  4. R. A. Marks, J. D. Sugar, and A. M. Glaeser, J. Mater. Sci., 36, No. 23: 5609 (2001). Crossref
  5. R. A. Marks, D. R. Chapmen, D. T. Danielson, and A. M. Glaeser, Acta Mater., 48, Nos. 18–19: 4425 (2000). Crossref
  6. E. V. Koganitskaya, Elektronika, 4: 86 (1959) (in Russian).
  7. F. L. Harding and D. R. Rossington, J. Amer. Ceram. Soc., 53, No. 2: 87 (1970). Crossref
  8. Yu. V. Naidich, I. I. Gab, V. S. Zhuravlev, V. F. Dubrova, and A. N. Gordynya, Svarochnoe Proizvodstvo, 2: 12 (1989) (in Russian).
  9. S. K. Rhee, J. Amer., Ceram. Soc., 54, No. 7: 332 (1971). Crossref
  10. V. V. Melnikov, S. V. Eremeev, and S. E. Kulkova, Zhurnal Tekhnicheskoy Fiziki, 81, No. 10: 114 (2011) (in Russian).
  11. T. Qiao-Ying, C. Lai-Fei, and Z. Li-Tong, J. Aviation Material, 24, No. 1: 53 (2004).
  12. N. Masaaki, S. Tohru, and O. Ikuo, Transaction of JWRI, 17, No. 2: 67 (1988).
  13. I. I. Gab, V. S. Zhuravlev, D. I. Kurkova, T. V. Stetsyuk, and Yu. V. Naidich, Poroshkovaya Metallurgiya, Nos. 7/8: 69 (1997) (in Russian).
  14. E. S. Karakozov, I. S. Kotelkin, G. N. Matveev, A. R. Merkulov, and M. H. Shorshorov, Fizika i Khimiya Obrabotki Materialov, 3: 123 (1968) (in Russian).
  15. E. Ciftyurek, K. Sabolsky, and E. M. Sabolsky, Sensors and Actuators B: Chemical, 181: 702 (2013). Crossref
  16. J. D. Wrbanek and K. L. H. Laster, Preparation and Analysis of Platinum Thin Films for High Temperature Sensor Applications (NASA/TM 2005-213433) (January, 2005).
  17. I. I. Amirov, V. V. Naumov, M. O. Izyumov, and R. S. Selyukov, Pisma v ZhTF, 39, No. 2: 68 (2013) (in Russian).
  18. R. Nowakowski, P. Grzeszczak, and R. Duš, Surf. Sci., 507–510: 813 (2002). Crossref
  19. V. Ramaswamy, M. A. Phillips, W. D. Nix, and B. M. Clemens, Mater. Eng. A, 319–321: 887 (2001). Crossref
  20. J. Y. Shim, J. D. Lee, J. M. Jin, H. Cheong, and S. Lee, Solar Energy Materials and Solar Cells, 93, No. 12: 2133 (2009). Crossref
  21. Yu. V. Naidich, I. I. Gab, B. D. Kostyuk, T. V. Stetsyuk, D. I. Kurkova, and S. V. Dukarov, Dop. NAN Ukrainy, 5: 97 (2007) (in Russian).