Evolution of Structural State and Microhardness of Surface of D16 Aluminium Alloy in Consequence of Ultrasonic Shock Treatment in Different Atmospheres

M. O. Vasyliev$^{1}$, B. M. Mordyuk$^{1}$, S. I. Sidorenko$^{2}$, S. M. Voloshko$^{2}$, A. P. Burmak$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 09.09.2015. Download: PDF

The D16 aluminium alloy is treated by ultrasonic impact treatment (UIT) in chemically active and neutral atmospheres under quasi-hydrostatic compression that provides more efficient surface strengthening comparing to the heat treatment and classical UIT schemes. As shown, it is possible to form durable oxide coatings with the thickness of several tens of micrometers on the alloy surface simultaneously with the low-temperature deformation of grain structure dispersion by means of UIT within the air. Increasing D16 surface microhardness (up to 2.5 times) by UIT in the inert atmosphere (Ar, He) is caused by the modification of dislocation structure, nanocrystalline structure formation due to the deformation, and formation of nanoscale precipitates of $S^{ʹ}$-Al$_{2}$CuMg hardening phase. The unique opportunity of surface microhardness increasing (up to $\cong$ 5 times) by UIT in a liquid nitrogen (at 77.4 K) due to the influence of synergetic processes of nanostructure formation and mechanochemical interaction of aluminium with nitrogen during cryo-deformation is demonstrated. The model of surface strengthening by means of the structure and phase mechanisms is proposed.

Key words: nanostructure, surface, quasi-hydrostatic compression, cryo-deformation, ultrasonic impact treatment (UIT).

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i09/1269.html

DOI: https://doi.org/10.15407/mfint.37.09.1269

PACS: 43.35.+d, 61.72.Ff, 81.40.Ef, 81.40.Lm, 81.40.Pq, 81.65.-b, 83.10.Tv

Citation: M. O. Vasyliev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Evolution of Structural State and Microhardness of Surface of D16 Aluminium Alloy in Consequence of Ultrasonic Shock Treatment in Different Atmospheres, Metallofiz. Noveishie Tekhnol., 37, No. 9: 1269—1289 (2015) (in Ukrainian)


REFERENCES
  1. A. V. Belotskiy, V. N. Vinnichenko, and I. M. Mukha, Ul'trazvukovoe Uprochnenie Metallov [Ultrasonic Hardening of Metals] (Kyiv: Tekhnika: 1989) (in Russian).
  2. I. I. Mukhanov and Yu. M. Golubev, Metalloved. Termich. Obrab. Met. [Metal Science and Heat Treatment of Metals], No. 9: 29 (1969) (in Russian).
  3. A. I. Markov, Primenenie Ul'trazvuka v Promyshlennosti [Application of Ultrasound in Industry] (Moscow: Mashinostroenie: 1975) (in Russian).
  4. V. P. Alekhin, Fizika Prochnosti i Plastichnosti Poverkhnostnykh Sloev Materialov [Physics of Strength and Plasticity of Surface Layers of Materials] (Moscow: Nauka: 1983) (in Russian).
  5. V. E. Panin, V. P. Sergeev, and A. V. Panin, Nanostrukturirovanie Poverkhnostnykh Sloev i Nanesenie Nanostrukturnykh Pokrytiy [Nanostructuring of Surface Layers and Deposition of Nanostructural Coatings] (Tomsk: Izd. TPU: 2010) (in Russian).
  6. A. V. Mordvintseva, Primenenie Ul'trazvuka v Svarochnoy Tekhnike. Trudy MVTU im. N. E. Baumana [Application of Ultrasound in Welding Engineering, Transactions of MVTU named after N. E. Bauman] (Moscow: TsINTI Energomash: 1959), vol. 45, p. 32 (in Russian).
  7. N. A. Krylov and A. M. Polishchuk, Fizicheskie Osnovy Primeneniya Ul'trazvuka v Promyshlennosti [Physical Foundations of Ultrasonic Application in Industry] (Leningrad: LDNTP: 1970), vol. 1, p. 70 (in Russian).
  8. A. A. Kazimirov, A. A. Gruzd, and G. I. Prokopenko, Avtomatich. Svarka, 7: 38 (1980) (in Russian).
  9. E. Sh. Statnikov, O. V. Korolkov, and V. N. Vityazev, Ultrasonics, 44: e533 (2006). Crossref
  10. I. K. Vagapov, Nelineynye Effekty v Ul'trazvukovoy Obrabotke [Nonlinear Effects in Ultrasonic Treatment] (Moscow: Nauka i Tekhnika: 1987) (in Russian).
  11. E. Statnikov, Physics and Mechanism of Ultrasonic Impact Treatment (Alabama: International Institute of Welding: Document XIII-2004-04) (2004).
  12. E. Sh. Statnikov and V. O. Muktepavel, Welding Int., 17, Iss. 9: 741 (2003). Crossref
  13. G. I. Prokopenko, A. V. Kozlov, B. N. Mordyuk, and V. O. Abramov, Metallofiz. Noveishie Tekhnol., 20: 30 (1998) (in Russian).
  14. B. M. Mordyuk, Zakonomirnosti Strukturoutvorennya ta Kinetyka Deformatsiynykh Protsesiv u Metalevykh Materialakh pry Kombinovanykh Vplyvakh iz Zastosuvannyam Ul'trazvuku [Regularities of Structural Formation and Kinetics of Deformation Processes at Combine Ultrasonic Effects] (Autoref. Dis. … for Dr. Phys.-Math. Sci.) (Kyiv: G. V. Kurdyumov Institute for Metal Physics, N.A.S.U.: 2012) (in Ukrainian).
  15. B. N. Mordyuk and G. I. Prokopenko, J. Sound Vibration, 308: 855 (2007). Crossref
  16. B. N. Mordyuk, M. O. Iefimov, G. I. Prokopenko, T. V. Golub, and M. I. Danylenko, Surf. Coat. Technol., 204: 1590 (2010). Crossref
  17. I. G. Polotskiy, Metally, Elektrony, Reshetka [Metals, Electrons, Lattice] (Ed. V. N. Gridnev) (Kyiv: Naukova Dumka: 1975), p. 389 (in Russian).
  18. C. A. Rodopoulos, A. Th. Kermanidis, and E. Statnikov, J. Mater. Eng. Perform., 16: 30 (2007). Crossref
  19. X. An, C. A. Rodopoulos, E. S. Statnikov, V. N. Vitazev, and O. V. Korolkov, J. Mater. Eng. Perform., 15: 355 (2006). Crossref
  20. V. A. Kuz'menko, Yu. M. Golovanev, and Yu. G. Bezymyannyy, Ul'trazvukovye Kolebaniya i Ikh Vliyanie na Mekhanicheskie Kharakteristiki Konstruktsionnykh Materialov [Ultrasonic Vibrations and their Effects on Mechanical Properties of Construction Materials] (Kyiv: Naukova Dumka: 1986), p. 186 (in Russian).
  21. Y. Huang and P. Prangnell, Acta Mater., 56: 1619 (2008). Crossref
  22. Y. M. Wang and E. Ma, Acta Mater., 52: 1699 (2004). Crossref
  23. Y. M. Wang, Y. M. Chen, F. Zhou, and E. Ma, Nature Lett., 419: 912 (2002). Crossref
  24. Y. B. Lee, D. H. Shin, K. T. Park, and W. J. Nam, Scr. Mater., 51: 355 (2004). Crossref
  25. P. A. Khaymovich, Voprosy Atomnoy Nauki i Tekhniki. Ser. Fizika Radiatsionnykh Povrezhdeniy i Radiatsionnoe Materialovedenie [Problems of Atomic Science and Technology. Ser. Physics of Radiation Effects and Radiation Materials Science], 89: 28 (2006) (in Russian).
  26. I. A. Gindin, M. B. Lazareva, V. P. Lebedev, Ya. D. Starodubov, V. M. Matsevityy, and V. I. Khotkevich, Fiz. Met. Metalloved., 24, No. 2: 347 (1967) (in Russian).
  27. I. A. Gindin, Ya. D. Starodubov, and V. K. Aksenov, Metallofizika, 2: 49 (1980) (in Russian).
  28. S. I. Sydorenko, S. M. Voloshko, I. E. Kotenko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 33, No. 12: 1659 (2011) (in Ukrainian).
  29. A. M. Glezer and L. S. Metlov, Fizika Tverdogo Tela, 52, No. 6: 1090 (2010) (in Russian).
  30. R. Z. Valiev and I. V. Aleksandrov, Nanostrukturnye Materialy, Poluchennye Intensivnoy Plasticheskoy Deformatsiey [Nanostructural Materials Fabricated by Severe Plastic Deformation] (Moscow: Logos: 2000) (in Russian).
  31. E. G. Pashinskaya, Yu. N. Podrezov, V. V. Stolyarov, A. V. Zavdoveev, and I. I. Tishchenko, Fizika i Mekhanika Materialov, 15: 26 (2012) (in Russian).
  32. E. G. Pashinskaya, A. A. Tolpa, M. M. Myshlyaev, V. V. Grishaev, and A. V. Zavdoveev, Metally, No. 11: 25 (2011) (in Russian).
  33. E. Pashinska, A. Tolpa, M. Myshlyaev, V. Grishaev, and A. Zavdoveev, Russian Metallurgy (Metally), No. 11: 1045 (2011). Crossref
  34. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 60: 6223 (2012). Crossref
  35. R. L. Deuis, C. Subramanian, and J. M. Yellup, Compos. Sci. Technol., 57: 415 (1997). Crossref
  36. B. N. Mordyuk, G. I. Prokopenko, Yu. V. Milman, M. O. Iefimov, K. E. Grinkevych, A. V. Sameljuk, and I. V. Tkachenko, Wear, 319: 84 (2014). Crossref