Solid-State Phase Transformation in Metallic Matrix of High-Chrome Cast Iron in Subcritical Temperature Range

Yu. G. Chabak

Pryazovskyi State Technical University, 7 Universytets’ka Str., 87500 Mariupol, Ukraine

Received: 16.06.2015; final version - 28.09.2015. Download: PDF

The results of study of phase—structural changes’ kinetics in cast high-chromium cast iron during ageing in the subcritical range of temperatures (350—700°C) are presented in a given article. The iron composed of 2.70% C, 2.20% Mn, 0.55% Si, 14.55% Cr, 0.93% Ni, 0.39% Mo, 0.38% V, and 0.11% Ti is studied. Using the microstructural method, the TTT-diagram of transformation of primary (as-cast) austenite is plotted. As found, within 25 hours of soaking, the austenite transformation occurs only in a range of temperatures of 550—700°C to form a fine eutectoid consisting of ferrite and cementite carbides having the fibrous or platelet shapes. Kinetics maximum of transformation corresponds to 650°C; the incubation period at this temperature is 5 minutes; the completion of the transformation is recorded after 8 hours of soaking. Formation of eutectoid at 700°C is accompanied by the precipitation of fine secondary carbides from austenite. Repeated heating of cast iron having fully eutectoid matrix at 650—700°C for up to 25 hours results in complete spheroidization and coagulation of eutectoid carbides. This leads to the formation of ferrite matrix with the granular carbides of mean diameter of 0.23—0.28 $\mu$m. The data regarding the influence of soaking time at 650—700°C on the number of eutectoid carbides of different shapes are presented in a given article. During repeated heating, the cementite type of carbides is not changed. The activation energy of coagulation of eutectoid carbides is calculated to be 73.1 kJ/mol. It indicates that rates of spheroidization and coagulation of eutectoid carbides are controlled by diffusion of carbon in ferrite. Because of doubled subcritical treatment, the microhardness of matrix reduces to 285—365 HV as well as bulk hardness reduces to 38—41 HRC that provides satisfactory machinability of cast iron.

Key words: cast iron, austenite, eutectoid carbides, spheroidization, hardness.



PACS: 61.72.Qq,, 62.20.Qp, 64.75.Op, 81.30.Mh, 81.40.Cd, 81.40.Ef

Citation: Yu. G. Chabak, Solid-State Phase Transformation in Metallic Matrix of High-Chrome Cast Iron in Subcritical Temperature Range, Metallofiz. Noveishie Tekhnol., 37, No. 10: 1349—1367 (2015) (in Russian)

  1. A. Studnicki, J. Kilarski, M. Przybył, J. Suchoń, and D. Bartocha, J. Achivements in Materials and Manufacturing Engineering, 16: 63 (2006).
  2. Y. P. Wang, D. Y. Li, L. Parent, and H. Tian, Wear, 301, Nos. 1–2: 390 (2013). Crossref
  3. I. I. Tsypin, Belye Iznosostoykie Chuguny (Moscow: Metallurgiya: 1983) (in Russian).
  4. Y. Hong-Shan, J. Wang, B.-L. Shen, H.-H. Liu, S.-J. Gao, and S.-J. Huang, Wear, 261, No. 10: 1150 (2006). Crossref
  5. J. Wang, C. Li, H. Liu, H. Yang, B. Shen, Sh. Gao, and S. Huang, Materials Characterization, 56, No. 1: 73 (2006). Crossref
  6. H. Liu, J. Wang, B. Shen, H. Yang, Sh. Gao, and S. Huang, J. University of Science and Technology Beijing: Mineral, Metallurgy, Material, 14, No. 3: 231 (2007).
  7. Yu. G. Chabak and V. G. Efremenko, Metallofiz. Noveishie Tekhnol., 34, No. 9: 1205 (2012) (in Russian).
  8. D. Kmetic, F. Mlakar, and V. Tucic, Železarski Zbornik, 21, No. 4: 151 (1987).
  9. V. G. Efremenko, Yu. G. Chabak, and M. N. Brykov, J. Materials Engineering and Performance, 22, No. 5: 1378 (2012). Crossref
  10. V. V. Parusov, I. I. Dolzhenkov, L. V. Podobedov, and I. A. Vakulenko, Izvestiya Akademii Nauk SSSR. Metally, No. 5: 159 (1980).
  11. A. A. Rauba and G. V. Bychkov, Liteynoe Proizvodstvo, No. 7: 33 (1985) (in Russian).
  12. R. J. Dawson, Abrasion Resistant Machinable White Cast Iron, Patent of USA No. 4395284, C22C 3856 (Published July 26, 1983).
  13. P. Amorim, H. Santos, and J. Santos, Materials Science Forum, 455–456: 290 (2004). Crossref
  14. Yu. G. Chabak, Stroitel'stvo, Materialovedenie, Mashinostroenie, Iss. 65: 188 (2013) (in Russian).
  15. K. S. Radchenko, M. M. Yamshyns'kyy, H. Ye. Fedorov, and Ye. O. Platonov, Visnyk Donbas'koyi Derzhavnoyi Mashynobudivnoyi Akademiyi, 32, No. 1: 218 (2014) (in Ukrainian).
  16. V. G. Efremenko, K. Shimizu, and Yu. G. Chabak, Metallurgical and Materials Transactions A, 44: 5434 (2013). Crossref
  17. V. G. Efremenko, K. Shymydzu, Yu. G. Chabak, A. V. Dzherenova, and B. V. Efremenko, Nauka ta Progres Transportu. Visnyk Dnipropetrovs'kogo Natsional'nogo Universytetu Zaliznychnogo Transportu, 50, No. 2: 103 (2014) (in Russian).
  18. S. Inthidech, P. Sricharoenchai, and Y. Matsubara, International Journal of Cast Metals Research, 25, No. 5: 257 (2012). Crossref
  19. A. Yu. Kutsov and M. A. Kovzel', Metaloznavstvo ta Obrobka Metaliv, No. 1: 59 (2003) (in Ukrainian).
  20. V. G. Efremenko, K. Shimizu, A. P. Cheiliakh, T. V. Kozarevskaya, K. Kusumoto, and K. Yamamoto, Int. J. Miner. Metall. Mater., 21: 1096 (2014). Crossref
  21. G. Laird and G. L. F. Powell, Metallurgical and Materials Transactions A, 24, No. 4: 981 (1993). Crossref
  22. A. E. Karantzalis, A. Lekatou, and H. Mavros, J. Materials Engineering and Performance, 2, No. 18: 174 (2009). Crossref
  23. I. E. Dolzhenkov and I. I. Dolzhenkov, Sferoidizatsiya Karbidov v Stali (Moscow: Metallurgiya: 1985) (in Russian).
  24. K. P. Bunin, Ya. N. Malinochka, and Yu. N. Taran, Osnovy Metallografii Chuguna (Moscow: Metallurgiya: 1969) (in Russian).
  25. A. W. Batchelor L. N. Lam, and M. Chandrasekaran, Materials Degradation and Its Control by Surface Engineering (London: Imperial College Press: 2011).