The Thermodynamic and Kinetic Properties of One-Valent Metallic Helium

V. T. Shvets

Odessa National Academy for Food Technologies, 1/3 Dvoryanska Str., 65082 Odessa, Ukraine

Received: 23.06.2015; final version - 08.09.2015. Download: PDF

Pair effective ion—ion interactions, free energy, pressure, and electrical resistance of liquid metallic helium are calculated in a wide range of densities and temperatures. For this problem, a perturbation theory by the pseudopotential of the electron—ion interaction is used. In all cases, calculations are carried out with regard to terms of the third-order perturbation theory, which is the maximum possible accuracy of calculations today. As pseudopotential, the one-parameter model pseudopotential is taken into account. For conduction electrons, the random phase approximation is used. Their exchange interaction and correlation are taken into account in local field approximation. For ionic subsystem, the model of hard spheres is used. Their diameter is one of the fitting parameters of a theory. This diameter and density, at which the transition from one-valent metallic helium to the divalent state takes place, are obtained from the analysis of the effective pair ion—ion interaction. The case of the one-valent metal helium is considered in detail. In all the above cases, the role of the third-order terms is significant. The value of electrical resistivity of metallic helium corresponds to the characteristic value of elementary one-valent metals. The behaviour of pressure as a function of density and temperature has the same peculiarity. The investigated ranges of densities and temperatures correspond to conditions observed in the central part of the gas-giants. Analysis of the results indicates the possible existence of the helium in a metallic state in the central parts of the Jovian-group planets.

Key words: equation of state, thermodynamics, electrical resistance, metal helium.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i10/1425.html

DOI: https://doi.org/10.15407/mfint.37.10.1425

PACS: 61.25.Bi, 61.25.Mv, 64.10.+h, 65.20.De, 71.15.Dx, 71.15.Nc, 96.30.Kf

Citation: V. T. Shvets, The Thermodynamic and Kinetic Properties of One-Valent Metallic Helium, Metallofiz. Noveishie Tekhnol., 37, No. 10: 1425—1442 (2015) (in Ukrainian)


REFERENCES
  1. E. G. Maksimov and Yu. T. Shilov, Physics-Uspekhi, 42, No. 11: 1121 (1999). Crossref
  2. V. E. Fortov, Physics-Uspekhi, 50, No. 4: 333 (2007). Crossref
  3. S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett., 76: 1860 (1996). Crossref
  4. V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, V. B. Mintsev, D. N. Nikolaev, A. A. Pyalling, and A. S. Filimonov, JETP Lett., 69, No. 12: 926 (1999). Crossref
  5. V. Ya. Ternovoi, A. S. Filimonov, V. E. Fortov, S. V. Kvitov, D. N. Nikolaev, and A. A. Pyaling, Physica B (Amsterdam), 265: 6 (1999). Crossref
  6. M. Bastea, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett., 86: 3108 (2001). Crossref
  7. R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, Phys. Rev. Lett., 90: 245501 (2003). Crossref
  8. D. A. Young, A. K. McMahan, and M. Ross, Phys. Rev. B: Condens. Matter, 24: 5119 (1981). Crossref
  9. A. Kietzmann, B. Holst, R. Redmer, M. P. Desjarfais, and T. R. Mattsson, Phys. Rev. Lett., 98: 190602 (2007). Crossref
  10. S. A. Kharallah and B. Militzer, Phys. Rev. Lett., 101: 106407 (2008). Crossref
  11. L. Stixrude and R. Jeanloz, Proc. Natl. Acad. Sci. USA, 105: 11071 (2008). Crossref
  12. V. T. Shvets, JETP, 143, No. 1: 159 (2013). Crossref
  13. E. G. Brovman, Yu. M. Kagan, and A. Holas, JETP, 34: 1300 (1971).
  14. D. J. Stevenson and N. W. Ashcroft, Phys. Rev. A: At., Mol., Opt. Phys., 9: 782 (1974). Crossref
  15. V. T. Shvets, JETP, 104, No. 4: 655 (2007). Crossref
  16. W. A. Harrison, Pseudopotentials in the Theory of Metals (New York: WA Benjamin: 1966).
  17. V. T. Shvets, Method of Green's Functions in the Theory of Metals (Odesa: Latstar: 2002) (in Ukrainian).
  18. V. T. Shvets and E. V. Belov, Acta Physica Polonica A, 96, No. 6: 403 (1999). Crossref
  19. I. A. Vakarchuk, Introduction to the Many-Body Problem (Lviv: Lviv University: 1999) (in Ukrainian).
  20. W. H. Shih and D. Stroud, Phys. Rev. B: Condens. Matter, 31: 3715 (1985). Crossref
  21. P. Lloyd and C. A. Shall, J. Phys. C: Solid State Phys., 1: 1620 (1968). Crossref
  22. E. G. Brovman and Yu. Kagan, JETP, 36, No. 5: 1025 (1972).
  23. E. G. Brovman and A. Holas, JETP, 39: 924 (1974).
  24. J. Hammerberg and N. W. Ashcroft, Phys. Rev. B: Solid State, 9: 3999 (1974). Crossref
  25. L. Ballentine and V. Heine, Philos. Mag., 9: 617 (1964). Crossref
  26. D. J. M. Geldart and S. H. Vosko, Can. J. Phys., 44: 2137 (1966). Crossref
  27. V. T. Shvets, Phys. Met. Metallogr., 89, No. 3: 211 (2000).
  28. V. T. Shvets, S. V. Savenko, and Ye. K. Malinovskiy, Condens. Matter Phys., 9: 1 (2006). Crossref
  29. S. D. Kaim, N. P. Kovalenko, and E. V. Vasiliu, J. Phys. Studies, 1: 589 (1997).
  30. V. T. Shvets, JETP Lett., 95, No. 1: 29 (2012). Crossref
  31. V. T. Shvets, Phys. Met. Metallogr., 113, No. 10: 977 (2012). Crossref
  32. V. T. Shvets, T. V. Shvets, and Ya. Ye. Rachynskiy, Ukr. J. Phys., 55: 251 (2010).