Electron Spin Resonance in Ceramic Samples of Lanthanum—Bismuth Manganite La$_{0.925}$Bi$_{0.075}$MnO$_{3}$

O. I. Tovstolytkin$^{1}$, T. I. Polek$^{1}$, D. J. Pod’yalovskii$^{1}$, T. M. Tarasenko$^{2}$, Z. F. Kravchenko$^{2}$, V. V. Burkhovetskyi$^{2}$

$^{1}$Institute of Magnetism under NAS and MES of Ukraine, 36b Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 46 Nauky Ave., UA-03028 Kyiv, Ukraine

Received: 02.06.2015. Download: PDF

Electrical and resonance properties of La$_{0.925}$Bi$_{0.075}$MnO$_{3}$ samples fabricated by sol—gel method are studied in the work. The measurements are carried out in the temperature range of 110—395 K. Temperature dependences of the parameters of electron spin resonance spectra, including resonance field, width of resonance line, and signal intensity are analysed. Based on the obtained results, it is concluded that ferromagnetic and paramagnetic phases coexist below 185 K. Strong influence of ferromagnetic phase on the resonance conditions of paramagnetic phase is revealed. It manifests itself by the dependence of the resonance parameters of paramagnetic phase on the parameters of ferromagnetic phase.

Key words: substituted manganites, metal—dielectric transition, electron spin resonance, magnetoresistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v37/i11/1503.html

DOI: https://doi.org/10.15407/mfint.37.11.1503

PACS: 68.55.J-, 71.30.+h, 75.47.Gk, 75.47.Lx, 76.30.-v, 76.50.+g

Citation: O. I. Tovstolytkin, T. I. Polek, D. J. Pod’yalovskii, T. M. Tarasenko, Z. F. Kravchenko, and V. V. Burkhovetskyi, Electron Spin Resonance in Ceramic Samples of Lanthanum—Bismuth Manganite La$_{0.925}$Bi$_{0.075}$MnO$_{3}$, Metallofiz. Noveishie Tekhnol., 37, No. 11: 1503—1516 (2015) (in Ukrainian)


REFERENCES
  1. V. M. Loktev and Yu. G. Pogorelov, Low Temperature Physics, 26, No. 3: 171 (2000). Crossref
  2. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep., 344, No. 1: 1 (2001). Crossref
  3. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science, 264, No. 5157: 413 (1994). Crossref
  4. A. Urushibara,Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B, 51, No. 20: 14103 (1995). Crossref
  5. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B, 67, No. 18: 180401 (2003). Crossref
  6. V. A. Khomchenko, I. O. Troyanchuk, O. S. Mantytskaya, M. Tovar, and H. Szymczak, ZhETF, 103, No. 1: 54 (2006).
  7. T. Ogawa, A. Sandhu, M. Chiba, H. Takeuchi, and Y. Koizumi, J. Magn. Magn. Mater., 290–291, Part 2: 933 (2005). Crossref
  8. Y. D. Zhao, Jonghyurk Park, R.-J. Jung, H.-J. Noh, and S. J. Oh, J. Magn. Magn. Mater., 280, Iss. 2–3: 404 (2004). Crossref
  9. T. N. Tarasenko, Z. F. Kravchenko, A. S. Mazur, V. I. Kamenev, N. E. Pismenova, O. F. Demidenko, O. V. Ignatenko, G. I. Makovetskii, A. M. Panasevich, K. I. Yanushkevich, A. I. Tovstolytkin, A. N. Pogorily, and T. I. Polek, High-Pressure Physics and Technology, 23, No. 4: 48 (2013) (in Russian).
  10. A. I. Tovstolytkin, A. N. Pogorelyi, D. I. Pod'yalovskiy, T. I. Polek, T. N. Tarasenko, V. I. Kamenev, O. F. Demidenko, G. I. Makovetskiy, and K. I. Yanushkevich, Nanosistemi, Nanomateriali, Nanotehnologii, 9, No. 1: 115 (2011) (in Russian).
  11. I. O. Troyanchuk, N. V. Kasper, O. S. Mantytskaya, and S. N. Pastushonok, ZhETF, 78, No. 2: 212 (1994).
  12. J. M. Barandiaran, J. Gutierrez, M. Amboage, and L. Righi, Physica B: Condens. Matter, 343, No. 1: 379 (2004). Crossref
  13. M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, and A. Fert, Nature Materials, 6, No. 4: 296 (2007). Crossref
  14. H. Béa, M. Gajek, and A. Barthélémy, J. Phys.: Condens. Matter, 20, No. 43: 434221 (2008). Crossref
  15. O. S. Mantytskaya, I. O. Troyanchuk, A. N. Chobot, and H. Szymczak, Low Temp. Phys., 30, No. 3: 218 (2004). Crossref
  16. V. Dayal and V. P. Kumar, J. Magn. Magn. Mater., 361: 212 (2014). Crossref
  17. V. K. Jha, M. M. Seikh, R. Chatterjee, and A. K. Kundu, Sci. Lett. J., 2: 31 (2013).
  18. I. O. Troyanchuk, O. S. Mantytskaja, H. Szymczak, and M. Y. Shvedun, Low Temp. Phys., 28, No. 7: 569 (2002). Crossref
  19. T. Izgi, V. S. Kolat, N. Bayri, H. Gencer, and S. Atalay, J. Magn. Magn. Mater., 372: 112 (2014). Crossref
  20. V. S. Kolat, S. Atalay, T. Izgi, H. Gencer, and N. Bayri, Metall. Mater. Trans. A, 46, No. 6: 2591 (2015). Crossref
  21. A. M. Ahmed, H. F. Mohamed, and M. Šoka, Low Temp. Phys., 40, No. 5: 418 (2014). Crossref
  22. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Boca Raton, FL: CRC Press: 1996).
  23. F. Rivadulla, M. F. Alvite, and L. Quintela, J. Appl. Phys., 91, No. 2: 785 (2002). Crossref
  24. K. W. Joh, C. H. Lee, and C. E. Lee, J. Phys.: Condens. Matter, 15, No. 24: 4161 (2003). Crossref
  25. A. I. Tovstolytkin, A. M. Pogorily, Yu. I. Dzhezherya, V. V. Dzyublyuk, and D. J. Mapps, J. Phys.: Condens. Matter, 21, No. 38: 386003 (2009). Crossref
  26. Yu. I. Dzhezherya and A. I. Tovstolytkin, J. Phys.: Condens. Matter, 19, No. 24: 246212 (2007). Crossref
  27. A. I. Shames, E. Rozenberg, G. Gorodetsky, and Y. M. Mukovskii, Phys. Rev. B, 68, No. 17: 174402 (2003). Crossref
  28. R. Thaljaoui, K. Pękała, M. Pękała, W. Boujelben, J. Szydłowska, J.-F. Fagnard, P. Vanderbemden, and A. Cheikhrouhou, J. Alloys Compd., 580: 137 (2013). Crossref
  29. S. I. Andronenko, A. A. Rodionov, A. V. Fedorova, and S. K. Misra, J. Magn. Magn. Mater., 326: 151 (2013). Crossref
  30. V. D. Doroshev, V. A. Borodin, V. I. Kamenev, A. S. Mazur, T. N. Tarasenko, A. I. Tovstolytkin, and S. V. Trukhanov, J. Appl. Phys., 104, No. 9: 093909 (2008). Crossref
  31. Eh. L. Nagaev, Physics-Uspekhi, 41, No. 8: 831 (1998).