Acoustic Properties of New Alloys Inconel 52 and Inconel 52MSS in the Temperature Range of 77—1200 K

Yu. A. Semerenko$^{1}$, O. V. Mozgovyj$^{2}$, L. V. Skibina$^{1}$, K. A. Yushchenko$^{3}$, G. V. Zviagintseva$^{3}$

$^{1}$B.I. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine
$^{2}$M. Kotsiubynsky Vinnytsia State Pedagogical University, 32 Ostrozhskogo Str., 21100 Vinnytsia, Ukraine
$^{3}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03142 Kyiv, Ukraine

Received: 16.09.2015. Download: PDF

The acoustic properties of the new alloys (Inconel 52 and Inconel 52MSS) based on the system of NiCrFe firstly investigated in a wide temperature range of 77—1200 K. As found in the Inconel 52, the behaviour of high temperature background of acoustic absorption correlates with the temperature range of failure of the plasticity. As experimentally established, the availability of more effective pinning centres hindering the dislocation mobility creates the preconditions for a more uniform distribution of dislocations that leads to the absence of gradients of local stresses that, in turn, provides a high heat resistance and hot cracking resistance of the alloy Inconel 52MSS. As shown, the acoustic characteristics of alloys of different alloying systems allow establishing differences in the propensity for hot cracking.

Key words: Inconel 52 and Inconel 52MSS alloys, strength, ductility, acoustic absorption, elasticity modulus, heat resistance, crack resistance, failure of the plasticity, hot cracks.



PACS: 43.35.Zc, 61.72.Ff, 61.72.Hh, 62.20.fq, 62.40.+i, 81.40.Lm, 81.70.Cv

Citation: Yu. A. Semerenko, O. V. Mozgovyj, L. V. Skibina, K. A. Yushchenko, and G. V. Zviagintseva, Acoustic Properties of New Alloys Inconel 52 and Inconel 52MSS in the Temperature Range of 77—1200 K, Metallofiz. Noveishie Tekhnol., 37, No. 12: 1643—1652 (2015) (in Russian)

  1. R. Zhang, S. D. Kiser, and B. A. Baker, A New NiCrFe Welding Product—Inconel 52MSS Provides Optimum Resistance to PWSCC and DDC,
  2. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (New York–London: Academic Press: 1972).
  3. H. M. Simpson and A. Sosin, Rev. Sci. Instrum., 48, Iss. 11: 1392 (1977). Crossref
  4. M. S. Blanter, I. S. Golovin, H. Neuhäuser, and H.-R. Sinning, InternalFriction in Metallic Materials: A Handbook (Berlin–Heidelberg: Springer-Verlag: 2007).
  5. alloy 690.pdf
  6. K. Yushchenko, V. Savchenko, G. Zviagintseva., N. Chervjakov, I. Volosatov, Yu. Semerenko, and L. Skibina, Proc. of 55 Int. Conf. 'Actual Problems of Strength 2014' (June 9–13, 2014, Kharkiv, Ukraine), p. 189.
  7. I. M. Lifshitz, Zh. Eksp. Teor. Fiz., 17, No. 4: 910 (1963) (in Russian).
  8. A. Granato and K. Lücke, J. Appl. Phys., 27: 583 (1956). Crossref
  9. G. Leibfried, Gittertheorie der Mechanischen und Thermischen Eigenschaften der Kristalle [Lattice Theory the Mechanical and Thermal Properties of the Crystals], Handbuch der Physik, vol. 7/1, Crystal Physics I (Berlin–Heidelberg: Springer: 1955), p. 104 (in German).
  10. W. P. Mason, Phys. Rev., 98: 1136 (1955). Crossref
  11. D. Niblett and J. Wilks, Advances in Physics, 9, No. 33: 1 (1960). Crossref
  12. B. I. Shapoval and V. M. Arzhavitin, Mekhanizmy Vysokotemperaturnogo Fona Vnutrennego Treniya Metallov [The Mechanisms of High-Temperature Background of Internal Friction of Metals] (Moscow: TsNIIatominform: 1988) (in Russian).