Nanocrystalline Structure of Melts

A. I. Karasevskii

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 11.01.2016. Download: PDF

As shown, in a melt near the melting temperature, the thermodynamically stable nanocrystalline structure can be formed. This structure consists of nanosize solid inclusions of the low-temperature phase. Thermodynamic stability of nanostructure is caused by decreasing of free energy due to the rotation of nanoparticles. The reason for the spontaneous rotation of nanoparticles in a medium is the increasing of the rotational entropy that accompanies the increasing of rotational frequencies of the nanoparticles. An equation describing the rotational motion of the nanoparticles in a medium is obtained and its solution is found. As shown, the formation of a large number of randomly oriented nanocrystals may be reason to form an amorphous phase upon cooling of the melt.

Key words: melt, nanocrystals, nanocrystals’ rotation, thermodynamic equilibrium.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i02/0141.html

DOI: https://doi.org/10.15407/mfint.38.02.0141

PACS: 61.20.Gy, 61.20.Lc, 61.25.Mv, 64.30.Ef, 64.60.Q-, 64.70.D-, 64.70.Nd, 65.40.Gd

Citation: A. I. Karasevskii, Nanocrystalline Structure of Melts, Metallofiz. Noveishie Tekhnol., 38, No. 2: 141—157 (2016) (in Russian)


REFERENCES
  1. A. V. Romanova, Metallofizika (Kiev: Naukova Dumka: 1971), Iss. 37, p. 3 (in Russian)
  2. R. Hezel and S. Steeb, Z. Naturforsch., 25a: 1085 (1970)
  3. Ya. I. Dutchak, Rentgenografiya Chistykh Metallov (L'vov: Vishcha Shkola: 1977), p. 162 (in Russian)
  4. A. Il'inskii, I. Kaban, W. Hoyer, A. Shpak, and L. Taranenko, J. Non-Cryst. Solids, 347, Iss. 1–3: 39 (2004) Crossref
  5. I. Kaban, S. Gruner, W. Hoyer, A. Il'inskii, and A. Shpak, J. Non-Cryst. Solids, 353: 1979 (2007) Crossref
  6. A. G. Il'inskyy, V. L. Karbivs'kyy, A. P. Shpak, and Yu. V. Lepeeva, Nanosistemi, Nanomateriali, Nanotehnologii, 8, Iss. 3: 483 (2010) (in Russian)
  7. R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben David, J. M. Penisson, and A. Bourret, Surf. Sci., 303: 231 (1994) Crossref
  8. T. Ben David, Y. Lereah, G. Deutscher, R. Kofman, and P. Cheyssac, Philos. Mag. A, 71: 1135 (1995) Crossref
  9. Y. Lereah, G. Deutscher, P. Cheyssac, and R. Kofman, Europhys. Lett., 12: 709 (1990) Crossref
  10. A. I. Karasevskii and V. V. Lyubashenko, Metallofiz. Noveishie Tekhnol., 35: 431 (2013) (in Russian)
  11. A. I. Karasevskii, Phil. Mag., 95: 1717 (2015) Crossref
  12. A. Be'er, R. Kofman, F.Phillipp, and Y. Lereah, Phys. Rev. B, 74: 224111 (2006) Crossref
  13. A. Be'er, R. Kofman, F.Phillipp, and Y. Lereah, Phys. Rev. B, 76: 075410 (2007) Crossref
  14. A. Be'er, R. Kofman, and Y. Lereah, Centr. Eur. J. Phys., 8: 1 (2010) Crossref
  15. E. del Barco, J. Asenjo, X. X. Zhang, R. Pieczynsky, A. Julia, J. Tejada, and R. F. Ziolo, Chem. Mater., 13: 1487 (2001) Crossref
  16. M. Klokkenburg, B. H. Erne, and A. P. Philipse, Langmuir, 21: 1187 (2005) Crossref
  17. L. D. Landau and E. M. Lifshitz, Kurs Teoreticheskoy Fiziki. Tom V. Statisticheskaya Fizika (Moscow: Nauka: 1976) (in Russian)
  18. L. D. Landau and E. M. Lifshitz, Kurs teoreticheskoy Fiziki. Tom VI. Gidrodinamika (Moscow: Nauka: 1986) (in Russian)
  19. V. N. Grigor'ev, V. A. Maidanov, V. Yu. Rubanskii, S. P. Rubets, E. Ya. Rudavskii, A. S. Rybalko, Ye. V. Syrnikov, and V. A. Tikhii, Phys. Rev. B, 76: 224524 (2007) Crossref
  20. E. Y. Rudavskii, V. N. Grigor'ev, A. A. Lisunov, V. A. Maidanov, V. Y. Rubanskii, S. P. Rubets, A. S. Rybalko, and V. A. Tikhii, J. Low Temp. Phys., 158: 578 (2010) Crossref
  21. I. M. Khalatnikov, Teoriya Sverkhtekuchesti (Moscow: Nauka: 1971) (in Russian)