High Frequency Vibrations Impact on Mechanical Properties of Nanocrystalline Titanium

S. А. Bakai$^{1}$, R. V. Smolianets$^{2}$, K. V. Kovtun$^{1}$, V. А. Moskalenko$^{2}$, A. S. Bakai$^{1}$

$^{1}$National Science Center Kharkov Institute of Physics and Technology, NAS of Ukraine, 1, Akademicheskaya Str., 61108 Kharkov, Ukraine
$^{2}$B.I. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine

Received: 07.12.2015. Download: PDF

Mechanical properties of nanocrystalline titanium are studied under uniform confined compression with ultrasound oscillations of 20 kHz to clarify the way of high-frequency vibrations’ effect on mechanical properties of nanocrystals. The nanocrystalline VT1-0 titanium of commercial purity used in the experiments is fabricated employing cryogenic grain-fragmentation technique. This material has a broad distribution in grain size (20—80 nm) with the average size amounting to 40 nm. The amplitude of cyclic stress approaches 275 МРа. The high-frequency vibrations are found to lower the yield stress and to initiate the formation of shear bands. With the deformation rate of 10$^{-4}$ s$^{-1}$, the yield stress becomes 2.5 times lower, and the major shear band forms under the deformation of 0.11 that is 5.7 times lower than the true deformation before the major shear band formation without action of the vibrations. On increasing the deformation rate up to 10$^{-3}$ s$^{-1}$, the consequences of high-frequency vibrations’ impact are weaken substantially.

Key words: nanoscale titanium, mechanical properties, strength, ductility, high-frequency vibrations.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i02/0189.html

DOI: https://doi.org/10.15407/mfint.38.02.0189

PACS: 62.20.fg, 62.20.me, 62.25.Fg, 62.25.Mn, 81.40.Jj, 81.40.Np, 81.70.Cv

Citation: S. А. Bakai, R. V. Smolianets, K. V. Kovtun, V. А. Moskalenko, and A. S. Bakai, High Frequency Vibrations Impact on Mechanical Properties of Nanocrystalline Titanium, Metallofiz. Noveishie Tekhnol., 38, No. 2: 189—203 (2016)


REFERENCES
  1. C. C. Koch, I. A. Ovid'ko, S. Seal, and S. Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications (Cambridge: Cambridge University Press: 2007) Crossref
  2. K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, and P. Wang, Acta Mater., 51: 87 (2003) Crossref
  3. K. S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater., 51: 5743 (2003) Crossref
  4. A. V. Sergueeva, N. A. Mara, and A. K. Mukherjee, J. Mater. Sci., 42: 1433 (2007) Crossref
  5. Y. Estrin and A. Vinogradov, Acta Mater., 61: 782 (2013) Crossref
  6. M. Dao, L. Lu, R. Asaro, J. Dehosson, and E. Ma, Acta Mater., 55: 4041 (2007) Crossref
  7. M. A Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci., 51: 427 (2006) Crossref
  8. A. Vinogradov, Mater. Sci. Forum, 503–504: 267 (2006) Crossref
  9. H. A. Padilla and B. L. Boyce, Exp. Mech., 50: 5 (2010) Crossref
  10. R. A. Meirom, D. H. Alsem, A. L Romasco, T. Clark, R. G. Polcawich, J. S. Pulskamp, M. Dubey, R. O. Ritchie, and C. L. Muhlstein, Acta Mater., 59: 1141 (2011) Crossref
  11. V. A. Filippenko, E. K. Sevidova, N. V. Dedukh, S. V. Malyshkina, A. A. Simonova, I. B. Timchenko, and V. A. Moskalenko, Ortopediya, Travmotologiya i Protezirovanie, 3: 69 (2011) (in Russian)
  12. A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, Scr. Mater., 45: 747 (2001) Crossref
  13. D. Jia, Y. M. Wang, K. T. Ramesh, E. Ma, Y. T. Zhu, and R. Z. Valiev, Appl. Phys. Lett., 79: 611 (2001) Crossref
  14. A. Vinogradov and S. Hashimoto, Materials Transactions, 42: 74 (2001) Crossref
  15. R. Z. Valiev, A.V. Sergueeva, and A. K. Mukherjee, Scr. Mater., 49: 669 (2003) Crossref
  16. V. A. Moskalenko, A. R. Smirnov, and R. V. Smolyanets, Fizika Nizkikh Temperatur, 40: 837 (2001) (in Russian)
  17. A. V. Rusakova, S. V. Lubenets, L. S. Fomenko, and V. A. Moskalenko, Fizika Nizkikh Temperatur, 38: 980 (2012) (in Russian)
  18. V. A. Moskalenko, V. I. Betekhtin, B. K. Kardashev, A. G.Kadomtsev, A. R. Smirnov, R. V. Smolyanets, and M. V. Narykova, Fizika Tverdogo Tela, 56: 1590 (2014) (in Russian)
  19. M. Papakyriacoua, H. Mayer, C. Pypen, H. Plenk Jr., and S. Stanzl-Tschegg, International Journal of Fatigue, 22: 873 (2000) Crossref
  20. M. Papakyriacoua, H. Mayer, C. Pypen, H. Plenk Jr., and S. Stanzl-Tschegg, Mater. Sci. Eng. A, 308: 143 (2001) Crossref
  21. A. Khalajhedayati and T. J. Rupert, Acta Mater., 65: 326 (2014) Crossref
  22. J. Schiøtz, T. Vegge, F. Di Tolla, and K. Jacobsen, Phys. Rev. B, 60: 11971(1999) Crossref
  23. A. S. Bakai, Topics in Applied Physics, 72: 208 (1994) Crossref
  24. A. S. Bakai, Poliklasternye Amorfnye Tela (Kharkov: Synteks: 2013) (in Russian)
  25. N. P. Lazarev and A. S. Bakai, J. Mech. Behav. Materials, 22: 119 (2013) Crossref
  26. Yu. Petrusenko, A. Bakai, I. Neklyudov, S. Bakai, V. Borysenko, G. Wang, P. K. Liaw, L. Huang, and T. Zhang, J. Alloys Compd., 509: 123 (2011) Crossref
  27. A. S. Bakai, S. A. Bakai, V. M. Gorbatenko, M. B. Lazarev, Yu. A. Petrusenko, and A. A. Scheretsky, Nanorozmirni Systemy: Struktura, Vlastyvosti, Tekhnologiya. Doslidzhennya v Ukrayini [Nanoscale Systems: Structure, Properties, Technology. Investigations in Ukraine] (Ed. A. G. Naumovets) (Kiev: Akademperiodika: 2014) (in Russian)
  28. A. S. Bakai, S. A. Bakai, G. N. Malik, V. M. Gorbatenko, V. M. Netesov, V. A. Emlyaninov, Problemy Atomnoy Nauki i Tekhniki. Seriya Radiatsionnaya Fizika i Radiatsionnoe Materialovedenie, Iss. 4 (87): 104 (2005) (in Russian)
  29. A. S. Bakai, V. V. Kul'ko, I. M. Mikhailovskij, V. B. Rabukhin, and O. A. Velikodnaja, J. Non-Cryst. Solids, 182: 315 (1995) Crossref
  30. A. S. Bakai, E. V. Sadanov, V. A. Ksenofontov, S. A. Bakai, J. A. Gordienko, and I. M. Mikhailovskij, Metals, 2: 441 (2012) Crossref
  31. I. M. Lifshitz, ZhETF, 17: 909 (1963) (in Russian)
  32. L. A. Greer, Y. Q. Cheng, and E. Ma, Mater. Sci., Eng. R, 74: 71 (2013) Crossref
  33. O. Bakai, Physics of Liquid Matter: Modern Problems. Springer Proceedings in Physics (Eds. L. Bulavin and N. Lebovka), vol. 171, Ch. 5, p. 103 (2015) Crossref