Formation of Nanosize Structures of Adsorbate in Processes of Condensation of a Gas Phase with Due Regard for Temperature Effects

V. O. Kharchenko$^{1}$, V. V. Yanovsky$^{2}$, A. V. Dvornichenko$^{3}$

$^{1}$Institute of Applied Physics, NAS of Ukraine, 58 Petropavlivska Str., 40000 Sumy, Ukraine
$^{2}$Institute for Single Crystals, NAS of Ukraine, 60 Nauky Ave., 61178 Kharkiv, Ukraine
$^{3}$Sumy State University, 2 Rymskogo-Korsakova Str., 40000 Sumy, Ukraine

Received: 20.10.2015. Download: PDF

An influence of thermal conductivity of a surface on adsorbate-islands’ formation at vapour deposition in the reaction—diffusion systems is studied. Non-equilibrium chemical reactions, which are responsible for stable-dimmers’ formation, are taken into account with assumption that the surface temperature can be changed locally due to adsorption/desorption processes. For homogeneous system, the conditions for first-order phase transitions of the gas—solid type are found. Within the framework of the linear stability analysis, the phase diagram illustrating a region with spatial instabilities is calculated. The numerical simulations show that thermal conductivity governs transient dynamics of adsorbate-structures’ formation. The mean size of adsorbate islands evolves in time according to power law, and the growth power exponentially increases with thermal conductivity. The distributions of adsorbate islands over sizes are calculated in stationary limit, and it is found that an increase in thermal conductivity of the surface leads to transformation of distribution from Lognormal form to Gaussian one. As shown, the mean size of stationary adsorbate islands is characterized by nanometre scale.

Key words: vapour deposition, nanosize adsorbate structures, reaction-diffusion systems, thermal effects.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i02/0205.html

DOI: https://doi.org/10.15407/mfint.38.02.0205

PACS: 05.40.-a, 65.80.-g, 68.43.-h, 81.16.Rf, 82.40.Ck, 82.40.Np, 89.75.Kd

Citation: V. O. Kharchenko, V. V. Yanovsky, and A. V. Dvornichenko, Formation of Nanosize Structures of Adsorbate in Processes of Condensation of a Gas Phase with Due Regard for Temperature Effects, Metallofiz. Noveishie Tekhnol., 38, No. 2: 205—227 (2016) (in Ukrainian)


REFERENCES
  1. E. Hirota, H. Sakakima, and K. Inomata, Giant Magneto-Resistance Devices (Berlin–Heidelberg–New York–Barcelona–Hong Kong–London–Milan–Paris–Tokyo: Springer: 2002) Crossref
  2. R. J. Warburton, C. Schaflein, D. Haft et al., Nature, 405: 926 (2000) Crossref
  3. A. Shah, P. Torres, R. Tscharner et al., Science, 285: 692 (1999) Crossref
  4. Li-Dong Zhao, Shih-Han Lo, Yongsheng Zhang et al., Nature, 508: 373 (2014) Crossref
  5. K. Pohl, M. C. Bartelt, J. de la Figuera et al., Nature, 397: 238 (1999) Crossref
  6. Y. W. Mo, B. S. Swartzentruber, R. Kariotis et al., Phys. Rev. Lett., 63: 2393 (1989) Crossref
  7. G. E. Cirlin, V. A. Egorov, L. V. Sokolov, and P. Werner, Semiconductors, 36, No. 11: 1294 (2002) Crossref
  8. J. P. Bucher, E. Hahn, P. Fernandez et al., Europhys. Lett., 27: 473 (1994) Crossref
  9. F. Besenbacher, L. Pleth Nielsen, and P. T. Sprunger, The Chemical Physics of Solid Surfaces (Eds. D. A. King and D. P. Woodruff) (Heidelberg: Elsevier: 1997), vol. 8, p. 207 Crossref
  10. H. N. G. Wadley, X. Zhou, R. A. Johnson et al., Progress in Materials Science, 46: 329 (2001) Crossref
  11. K. S. Sree Harsha, Principles of Physical Vapour Deposition of Thin Films (Amsterdam–Boston–London: Elesevier: 2006)
  12. G. Perotto, V. Bello, T. Cesca et al., Nucl. Instr. Meth. Phys. Res. B, 268: 3211 (2010) Crossref
  13. H. Bernas, Nucl. Instr. Meth. Phys. Res. B, 268: 3171 (2010) Crossref
  14. R. M. Bradley and J. M. E. Harper, J. Vac. Sci. Technol. A, 6, No.4: 2390 (1988) Crossref
  15. P. Karmakar, Nanofabrication by Ion-Beam Sputtering: Fundamentals and Applications (Eds. T. Som and D. Kanjilal) (Boca Raton, FL: Taylor & Francis Group, LLC: 2013)
  16. J. Lian, W. Zhou, Q. M. Wei et al., Appl. Phys. Lett., 88: 093112 (2006) Crossref
  17. D. O. Kharchenko, V. O. Kharchenko, I. O. Lysenko et al., Phys. Rev. E, 82: 061108 (2010) Crossref
  18. V. O. Kharchenko and D. O. Kharchenko, Cond. Mat. Phys., 14, No. 2: 23602 (2011) Crossref
  19. V. O. Kharchenko, D. O. Kharchenko, and I. O. Lysenko, Nanotechnology: Synthesis and Characterization (Ed. J. N. Govil) (Houston: Studium Press LLC: 2013), vol. 2, p.367
  20. Yu. Yoshida, N. Sakaguchi, S. Watanabe, and T. Kato, Appl. Phys. Express, 4, No. 5: 055202 (2011) Crossref
  21. S. M. Huang, M. H. Hong, Y. F. Lu et al., J. Appl. Phys., 91, No. 5: 3268 (2002) Crossref
  22. Y. Lu and S. C. Chen, Nanotechnology, 14: 505 (2003) Crossref
  23. J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Rep. Prog. Phys., 47: 399 (1984) Crossref
  24. A. Pimpinelli and J. Villian, Phys. Cryst. Growth (Cambridge: Cambridge University Press: 1998) Crossref
  25. R. E. Caflisch, Proc. of the International Congress of Mathematicians (Madrid, 2006), p. 1419
  26. D. O. Kharchenko, V. O. Kharchenko, and I. O. Lysenko, Phys. Scr., 83: 045802 (2011) Crossref
  27. D. O. Kharchenko, V. O. Kharchenko, T. I. Zhylenko et al., Eur. Phys. J. B, 86: 175 (2013) Crossref
  28. D. O. Kharchenko, V. O. Kharchenko, and S. V. Kokhan, Cond. Mat. Phys., 17: 33004 (2014) Crossref
  29. V. O. Kharchenko, D. O. Kharchenko, and A. V. Dvornichenko, Eur. Phys. J. B, 88: 3 (2015) Crossref
  30. K. Binder and P. Haasen, Material Science and Technology: Phase Transformations in Materials (Weinham: Wiley-VCH: 1990), vol. 5, p. 405
  31. Q. Tran-Cong and A. Harada, Phys. Rev. Lett., 76: 1162 (1996) Crossref
  32. A. Mikhailov and G. Ertl, Chem. Phys. Lett., 238: 104 (1994) Crossref
  33. M. Hildebrand and A. S. Mikhailov, J. Phys. Chem., 100: 19089 (1996) Crossref
  34. D. Batogkh, M. Hildebrant, F. Krischer, and A. Mikhailov, Phys. Rep., 288: 435 (1997) Crossref
  35. M. Hildebrand, A. S. Mikhailov, and G. Ertl, Phys. Rev. Lett., 81, No. 4: 2602 (1998) Crossref
  36. M. Hildebrand, A. S.Mikhailov, and G. Ertl, Phys. Rev. E, 58, No. 11: 5483 (1998) Crossref
  37. H. Brune, Surf. Sci. Reports, 31: 121 (1998) Crossref
  38. R. E. Caflisch, M. F. Gyure et al., Phys. Rev. E, 59: 6879 (1999) Crossref
  39. V. O. Kharchenko, D. O. Kharchenko, S. V. Kokhan et al., Phys. Scr., 86: 055401 (2012) Crossref
  40. V. O. Kharchenko and D. O. Kharchenko, Phys. Rev. E, 86: 041143 (2012) Crossref
  41. I. Santamaria-Holek, A. Gadomski, and J. M. Rubi, J. Phys. Condens. Matter, 23: 235101 (2011) Crossref
  42. S. E. Mangioni and H. S. Wio, Phys. Rev. E, 71: 056203 (2005) Crossref
  43. S. E. Mangioni, Physica A, 389: 1799 (2010) Crossref
  44. S. B. Casal, H. S. Wio, and S. Mangioni, Physica A, 311: 443 (2002) Crossref
  45. V. O. Kharchenko, D. O. Kharchenko, and A. V. Dvornichenko, Surf. Sci., 630: 158 (2014) Crossref
  46. J. Swift and P. C. Hohenberg, Phys. Rev. A, 15: 319 (1977) Crossref
  47. V. I. Arnold, Ordinary Differential Equations (Cambridge: MIT Press: 1973)