Influence of Periodic Change of Temperature on Diffusion Decomposition of Binary Solid Solution

R. V. Shapovalov$^{1}$, O. A. Osmayev$^{2}$

$^{1}$National Science Center Kharkov Institute of Physics and Technology, NAS of Ukraine, 1, Akademicheskaya Str., 61108 Kharkov, Ukraine
$^{2}$Ukrainian State University of Railway Transport, 7 Feuerbach Square, 61050 Kharkiv, Ukraine

Received: 17.04.2015; final version - 16.11.2015. Download: PDF

Decomposition of a homogeneous oversaturated solid solution under periodic changes of temperature (thermal cycling) is investigated by example of nucleation and growth of copper clusters in FeCu$_{1.34\%}$ alloy in the range of 600—800 K. As shown, the different modes of thermal cycling, which are essentially different in the heating and cooling rates, lead to similar results–to acceleration of ageing of nonequilibrium solution in comparison with isothermal annealing at the temperature within the interval at issue.

Key words: iron—copper alloy, thermocycling, nucleation, diffusion decomposition, numerical solution.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i04/0427.html

DOI: https://doi.org/10.15407/mfint.38.04.0427

PACS: 61.72.Bb, 61.72.Cc, 61.72.J-, 64.60.My, 64.60.qe, 64.75.Op, 66.30.Dn

Citation: R. V. Shapovalov and O. A. Osmayev, Influence of Periodic Change of Temperature on Diffusion Decomposition of Binary Solid Solution, Metallofiz. Noveishie Tekhnol., 38, No. 4: 427—454 (2016) (in Russian)


REFERENCES
  1. V. V. Slezov, Kinetics of First-Order Phase Transitions (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA: 2009).
  2. E. Clouet, Modelling of Nucleation Processes, arXiv:1001.4131v2 [cond-mat.mtrl-sci] (2010).
  3. R .V. Shapovalov, A. V. Pakhomov, and V. V. Slyozov, Metallofiz. Noveishie Tekhnol., 35, No. 3: 305 (2013) (in Russian).
  4. M. H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, and C. H. de Novion, J. Nucl. Mater., 245, Iss. 2–3: 224 (1997). Crossref
  5. U. Birkenheuer, A. Ulbricht, F. Bergner, and A. Gokhman, Journal of Physics: (Conference Series), 247: 012011 (2010), (http://iopscience.iop.org/1742-6596/247/1/012011). Crossref
  6. D. D. Kashchiev, Nucleation Basic Theory with Applications (Oxford: Butterworth Heinemann: 2000), p. 529.
  7. Ya. B. Zel’dovich, ZhETF, 12, Iss. 11/12: 525 (1942) (in Russian).
  8. D. B. Duncan and A. R. Soheili, Appl. Numerical Mathematics, 37, Iss. 1–2: 1 (2001). Crossref
  9. A. A. Turkin, A. S. Bakai, J. Nuclear Materials, 358, No. 11: 10 (2006). Crossref
  10. V. Dubinko and R. Shapovalov, Localized Excitations in Nonlinear Complex Systems. Nonlinear Systems and Complexity (Ed. R. Carretero-Gonzalez) (Switzerland: Springer International Publishing: 2014), p. 265.
  11. F. Christien and A. Barbu, J. Nucl. Mater., 324, Iss. 2–3: 90 (2004). Crossref
  12. E. Khayrer and G. Vanner, Reshenie Obyknovennykh Differentsial’nykh Uravneniy. Zhestkie i Differentsial’no-Algebraicheskie Zadachi [Solving of Ordinary Differential Equations. Stiff and Differential-Algebraic Problems] (Moscow: Mir: 1999) (in Russian).
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (New York: Cambridge University Press: 2007).