Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality

V. G. Gavriljuk$^{1}$, S. O. Firstov$^{2}$, V. A. Sirosh$^{1}$, A. I. Tyshchenko$^{1}$, G. S. Mogilny$^{1}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{2}$I.M. Frantsevich Institute for Problems of Materials Sciences, NAS of Ukraine, 3 Academician Krzhizhanovskoho Str., UA-03680 Kyiv-142, Ukraine

Received: 10.02.2016. Download: PDF

Carbon distribution in the as-quenched Fe—C martensite obtained after cooling down to 4.5 K is studied using Mössbauer spectroscopy. The location of carbon atoms in the one of three available sublattices of octahedral interstitial sites is established, whereas the partial occupation by carbon atoms of tetrahedral sites or octahedral sites in other sublattices is not confirmed. The ageing of virgin isothermal martensite starts during heating at temperatures above -50°C and leads to disappearance of single carbon atoms and their clustering in the $\alpha$ solid solution. In comparison with martensite obtained at room temperature, a decreased tetragonality of the low-temperature isothermal martensite and its partial recovery during ageing is observed. Based on the estimation of dislocation density and the absence of $\varepsilon$-carbide precipitation during subsequent tempering, a conclusion is made that plastic deformation occurs in the course of isothermal martensitic transformation because of the softness of the virgin martensite. Finally, a new interpretation of the abnormally low tetragonality is proposed, of which the essence is the capture and transport of immobile carbon atoms by gliding dislocations. As a result, a part of carbon is removed from the  solid solution and forms carbon atmospheres around the dislocations. The comparison of this hypothesis with available other ones is presented. Two possible reasons for partial recovery of tetragonality during ageing of virgin martensite are discussed: (i) the unfreezing of Snoek atmospheres created by gliding dislocations crossing the immobile carbon atoms at low temperatures and (ii) coherent stresses at the boundaries of the intermittent carbon-rich and carbon-depleted domains in the modulated structure of the aged martensite.

Key words: isothermal martensitic transformation, plastic deformation, short-range atomic order, dislocations, tetragonality.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i04/0455.html

DOI: https://doi.org/10.15407/mfint.38.04.0455

PACS: 61.05.cp, 61.72.Hh, 62.20.fq, 64.70.kd, 81.30.Hd, 81.30.Kf, 81.40.Lm

Citation: V. G. Gavriljuk, S. O. Firstov, V. A. Sirosh, A. I. Tyshchenko, and G. S. Mogilny, Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality, Metallofiz. Noveishie Tekhnol., 38, No. 4: 455—475 (2016)


REFERENCES
  1. G. V. Kurdyumov and O. P. Maximova, Reports of AS USSR, 61: 83 (1948).
  2. C. Benedics, J. Iron Steel Inst., 77: 233 (1908).
  3. E. C. Bain, Chem. Met. Eng., 26: 543 (1922).
  4. S. S. Steinberg, Metallurg., 4: 68 (1930) (in Russian).
  5. V. D. Sadovsky and I. V. Shtishevskaya, Proc. UFAS USSR, 9: 45 (1937) (in Russian).
  6. V. A. Lobodyuk and E. I. Estrin, Uspekhi Fizicheskikh Nauk, 175, No. 7: 745 (2005) (in Russian).
  7. V. A. Lobodyuk and E. I. Estrin, Martensitic Transformations (Cambridge: Cambridge International Science Publishing: 2015).
  8. J. Pietikainen, J. Iron Steel Inst., 206: 74 (1968).
  9. J. Pietikainen, Trans. Iron and Steel Inst. of Japan, 25, No. 4: 340 (1985).
  10. G. T. Eldis and M. Cohen, Metall. Trans. A, 14, Iss. 6: 1007 (1983). Crossref
  11. V. N. Gridnev, V. G. Gavriljuk, V. V. Nemoshkalenko, Yu. A. Polushkin, and O. N. Razumov, Fiz. Met. Metalloved., 43, No. 3: 582 (1977) (in Russian).
  12. L. I. Lysak and Ya. N. Vovk, Fiz. Met. Metalloved., 20, No. 4: 540 (1965) (in Russian).
  13. L. I. Lysak and V. Ye. Danilchenko, Fiz. Met. Metalloved., 32, No. 3: 639 (1971) (in Russian).
  14. L. I. Lysak and L. O. Andrushchik, Fiz. Met. Metalloved., 26, No. 2: 380 (1968) (in Russian).
  15. L. I. Lysak and S. P. Kondratiev, Fiz. Met. Metalloved., 30, No. 5: 973 (1970) (in Russian).
  16. L. I. Lysak and B. I. Nikolin, Fiz. Met. Metalloved., 22, No. 5: 730 (1966) (in Russian).
  17. A. L. Roytburd and A. G. Khachaturyan, Fiz. Met. Metalloved., 30, No. 6: 1189 (1970) (in Russian).
  18. D. A. Mirzayev, S. V. Rushits, A. I. Ustinov, and Yu. H. Goykhenberg, Metallofizika, 4, No. 4: 43 (1982) (in Russian).
  19. M. Watanabe and C. M. Wayman, Scr. Metall., 5, Iss. 2: 109 (1971). Crossref
  20. L. I. Lysak, A. G. Drachinskaya, and N. A. Storchak, Fiz. Met. Metalloved., 34, No. 1: 84 (1972) (in Russian).
  21. L. I. Lysak, S. A. Artemyuk, and Yu. M. Polyshchuk, Fiz. Met. Metalloved., 35, No. 5: 1098 (1973) (in Russian).
  22. L. K. Mykhaylova, Reports of AS USSR, 216, No. 4: 778 (1974).
  23. G. V. Kurdyumov and A. G. Khachaturyan, Acta Metall., 23, Iss. 9: 1077 (1975). Crossref
  24. J. R. Entin, V. A. Somenkov, and S. Sh. Shylstein, Dokl. Akad. Nauk USSR, 206: 1096 (1972) (in Russian).
  25. V. G. Gavriljuk, V. N. Gridnev, V. V. Nemoshkalenko, O. N. Razumov, and Yu. A. Polushkin, Fiz. Met. Metalloved., 43, No. 3: 582 (1977) (in Russian).
  26. H. Ino, T. Ito, S. Nasu, and U. A. Gonser, Acta Metall., 30: 9 (1982). Crossref
  27. J.-M. Genin, Metall. Trans. A, 18: 1371 (1987). Crossref
  28. V. G. Gavriljuk, W. Theisen, V. V. Sirosh, E. V. Polshin, A. Kortmann, G. S. Mogilny, Yu. N. Petrov, and Ye. V. Tarusin, Acta Mater., 61: 1705 (2013). Crossref
  29. D. E. Kaputkin, Mat. Sci. Eng. A, 438–440: 207 (2006). Crossref
  30. P. M. Gielen and R. Kaplow, Acta Metall., 15: 49 (1967). Crossref
  31. T. Moriya, H. Ino, and F. E. Fujita, J. Phys. Soc. Japan, 24: 60 (1968).
  32. M. Lesoille and P. M. Gielen, Metall. Trans., 3: 2681 (1972).
  33. R. I. Entin, V. A. Somenkov, and S. S. Shilstein, Reports of AS USSR, 5: 1096 (1972) (in Russian).
  34. W. K. Choo and R. W. Kaplow, Acta Metall., 21: 725 (1973). Crossref
  35. N. de Cristopharo and R. Kaplow, Metall. Trans. A, 8: 35 (1977). Crossref
  36. A. L. Sozinov, A. G. Balanyuk, and V. G. Gavriljuk, Acta Mater., 45: 225 (1997). Crossref
  37. O. N. C. Uwakweh, J. Ph. Bauer, and J.-M. R. Genin, Metall. Trans. A, 21: 589 (1990). Crossref
  38. J. Foct, J. P. Senateur, J. M. Dubois, and G. le Caer, J. Phys. Colloques, 40: C2-647 (1979). Crossref
  39. J. Foct, G. Le Caer. J. M. Dubois, and R. Faivri, Veglici, Borki, Azotki w Stalakh (Poznan: Politecn. Poznan: 1978), p. 225.
  40. R. Ingalls, Phys. Rev., 133, Iss. 3A: 787 (1964). Crossref
  41. R. E. Watson, A. C. Gossard, and J. Jafet, Phys. Rev., 140, Iss. 1A: 375 (1965). Crossref
  42. M. H. Cohen and F. Reif, Solid. Phys., 5: 321 (1957). Crossref
  43. R. A. Taylor, L. Chang, G. B. Olson, G. D. W. Smith, M. Cohen, and J. B. Wander Sande, Metall. Trans. A, 20: 2717 (1989). Crossref
  44. O. N. C. Uwakweh, J.-M. R. Genin, and J.-F. Silvain, Metall. Trans. A, 22, Iss. 4: 797 (1991). Crossref
  45. V. O. Sirosh, A. I. Tyshchenko, G. S. Mogilnyi, Yu. M. Petrov, E. V. Polshin, and V. G. Gavriljuk, Metallofiz. Noveishie Tekhnol., 36, No. 7: 871 (2014) (in Russian). Crossref
  46. D. V. Wilson, Acta Metall., 5: 293 (1957). Crossref
  47. J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards, Metall. Trans. A, 7, Iss. 6: 821 (1976). Crossref
  48. A. J. West and M. R. Louthan, Metall. Trans. A, 10, Iss. 11: 1675 (1979). Crossref
  49. G. S. Frankel and R. M. Lataqnision, Metall. Trans. A, 17, Iss. 5: 861 (1986). Crossref
  50. M. A. Matosyan and V. M. Golikov, Protective Coatings on Metals (Kiev: Naukova Dumka: 1970), vol. 3, p. 57 (in Russian).
  51. T. N. Lipchin, L. G. Chernuka, A. U. Pavlova, and V. I. Suntsev, Metal Science and Heat Treatment of Metals, Iss. 2: 66 (1973) (in Russian).
  52. L. N. Larikov, V. F. Mazanko, V. M. Falchenko et al., Reports of Academy of Sciences of Ukrainian SSR, Iss. 7: 636 (1975) (in Russian).
  53. I. M. Karnaukhov, O. Ye. Pogorelov, and M. S. Chernolevs'ky, Metallofiz. Noveishie Tekhnol., 28, No. 6: 827 (2006) (in Russian).
  54. M. V. Belous and V. T. Cherepin, Fiz. Met. Metalloved., 12, No. 5: 685 (1961) (in Russian).
  55. V. N. Gridnev, V. G. Gavriljuk, I. Ya. Dekhtyar, Yu. Ya. Meshkov, V. G. Prokopenko, and P. S. Nizin, phys. status solidi (a), 14, Iss. 2: 689 (1972). Crossref
  56. V. G. Gavriljuk, Fiz. Met. Metalloved., 45, No. 5: 969 (1978) (in Russian).
  57. V. N. Gridnev and V. G. Gavriljuk, Physics of Metals (USSR), 4, No. 3: 531 (1982).
  58. V. G. Gavriljuk, Mat. Sci. Eng. A, 345: 81 (2003). Crossref
  59. Yu. Ivanisenko, W. Lojkowski, R. Z. Valiev, and H.-J. Fecht, Acta Mater., 51: 5555 (2003). Crossref
  60. Y. J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, and R. Kirchheim, Acta Mater., 59: 3965 (2011). Crossref
  61. A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc. A, 62: 49 (1949).
  62. M. A. Shtremel, B. Winderlich, and F. F. Sagdarova, Fiz. Met. Metalloved., 47, No. 4: 754 (1979) (in Russian).
  63. A. Inoue, T. Ogura, and T. Masumoto, J. Jap. Inst. Metals, 37, No. 8: 875 (1973).
  64. A. Inoue, T. Ogura, and T. Masumoto, Metall. Trans. A, 8, Iss. 11: 1689 (1977). Crossref
  65. F. A. Garner and J. M. McCarthy, Physical Metallurgy of Controlled Expansion Invar-Type Alloys (Eds. K. C. Russel and D. F. Smith) (Warendale, PA: TMS–AIME: 1990), p. 187.
  66. D. N. Movchan, V. N. Shyvanyuk, B. D. Shanina, and V. G. Gavriljuk, phys. status solidi (a), 207, Iss. 8: 1796 (2010). Crossref
  67. K. Ullakko and V. G. Gavriljuk, Acta Metallurgica et Materialia, 40, Iss. 10: 2471 (1992). Crossref