Effect of Nickel-Ions’ Substitution with Nonmagnetic Cadmium Ions on the Structural and Optical Properties of Nickel Ferrite

V. S. Bushkova, B. K. Ostafiychuk, I. P. Yaremij, M. L. Mokhnatskyi

Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine

Received: 12.03.2016; final version - 08.04.2016. Download: PDF

In this study, powders of nickel—cadmium ferrites are synthesised using sol—gel technology and autocombustion (SGA method). After completing the process of autocombustion, a single-phase NiFe$_{2}$O$_{4}$ powder is obtained with a spinel cubic structure of space group $Fd3m$. In the ferrite powders, containing substituting nonmagnetic ions, additional phases of the NiO, CdO and $\alpha$-Fe$_{2}$O$_{3}$ oxides are also enclosed. After burning at a temperature of 900°C for 3 hours, the monophase powders are obtained. The average size of coherent scattering regions of monophase powders is found to be in the range of 42—61 nm. As shown, the lattice parameter increases with increasing content of Cd$^{2+}$ ions. The optical properties of ferrite powders are studied depending on the degree of substitution of nickel ions with the cadmium ones. As a result of analysis of the absorption spectra, it is revealed that, for all investigated powders, the allowed direct transition of electrons from the valence band to the conduction band is inherent. As shown, the optical band gap increases with increasing concentration of cadmium ions in the ferrite structure, and it is in the range of 1.91 to 2.56 eV.

Key words: nickel—cadmium ferrite, lattice parameter, absorption coefficient, optical band gap, sol—gel technology.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i05/0601.html

DOI: https://doi.org/10.15407/mfint.38.05.0601

PACS: 61.05.cp, 61.46.Df, 61.72.J-, 75.50.Pp, 75.50.Tt, 78.67.Bf, 81.07.Wx

Citation: V. S. Bushkova, B. K. Ostafiychuk, I. P. Yaremij, and M. L. Mokhnatskyi, Effect of Nickel-Ions’ Substitution with Nonmagnetic Cadmium Ions on the Structural and Optical Properties of Nickel Ferrite, Metallofiz. Noveishie Tekhnol., 38, No. 5: 601—616 (2016) (in Ukrainian)

  1. E. S. Borovik, V. V. Eremenko, and A. S. Mil'ner, Lektsii po Magnetizmu [Lectures on Magnetism] (Moscow: Fizmatlit: 2005) (in Russian).
  2. R. Alcántra, M. Jaraba, P. Lavela, J. L. Tirado, J. C. Jumas, and J. Olivier-Fourcade, Electrochemistry Communications, 5: 16 (2003). Crossref
  3. L. Satyanarayana, K. M. Reddy, and S. V. Manorama, Mater. Chem. Phys., 82, No. 1: 21 (2003). Crossref
  4. B. S. Randhawa, H. S. Dosanjh, and M. Kaur, Ceramics International, 35, No. 3: 1045 (2009). Crossref
  5. A. M. Ghozza and H. G. El-Shobaky, Mater. Sci. Eng. B, 127, No. 2: 233 (2006). Crossref
  6. J. Teillet, J. L. Dormann, A. Hauet, M. Nogues, F. Varrent, M. Zemirli, and J. M. Greneche, Hyperfine Interactions, 68: 345 (1991). Crossref
  7. G. Schmid, Nanoparticles: From Theory to Application (New York: Wiley Interscience: 2004).
  8. S. H. Yu and M. Yoshimura, Adv. Funct. Mater., 12: 9 (2002). Crossref
  9. Ce-Wen Nan, M. I. Bichurin, D. Shuxiang, D. Viehland, and G. Srinivasan, J. Appl. Phys., 103: 031101 (2008). Crossref
  10. J. S. Jang, S. J. Hong, J. S. Lee, P. H. Borse, and H. G. Kim, J. Korean Phys. Soc., 54: 204 (2009). Crossref
  11. D. Rekha, R. Subasri, K. Radha, and H. Pramod-Borse, Solid State Communications, 151, No. 6: 470 (2011). Crossref
  12. J. Wang, Mater. Sci. Eng. B, 127, No. 1: 81 (2006). Crossref
  13. J. M. Greneche, J. Teillet, and H. Pascard, J. Magn. Magn. Mater., 140: 2087 (1995). Crossref
  14. M. B. Shelar, P. A. Jadhav, S. S. Chougule, M. M. Mallapur, and B. K. Chougule, J. Alloys Compd., 476, Nos. 1–2: 760 (2009). Crossref
  15. D. Ravinder, S. Srinivasa Rao, and P. Shalini, Mater. Lett., 57: 4040 (2003). Crossref
  16. C. J. Brinker and G. W. Scherer, Sol–Gel Science. The Physics and Chemistry of Sol–Gel Processing (San Diego: Academic Press: 1990).
  17. Handbook of Sol–Gel Science and Technology: Processing, Characterization, and Applications (Ed. S. Sakka) (New York: Kluwer Academic Publishers: 2004).
  18. X. Lou, Sh. Liu, D. Shi, and W. Chu, Mater. Chem. Phys., 105, No. 1: 67 (2007). Crossref
  19. A. Sutka, G. Mezinskis, D. Jakovlevs, and V. Korsaks, J. Australian Ceramic Society, 49, No. 2: 136 (2013).
  20. L. Vegard and H. Dale, Z. Kristallogr. B, 67: 148 (1928).
  21. M. M. Karanjkar, N. L. Tarwal, A. S. Vaigankar, and P. S. Patil, Ceramics International, 39, No. 2: 1757 (2013). Crossref
  22. Ch. Upadhyay and H. C. Verma, J. Appl. Physics, 95, No. 10: 5746 (2004). Crossref
  23. S. Chakrabarti, D. Ganguli, and S. Chaudhuri, Physica E, 24, No. 3: 333 (2004). Crossref
  24. Ye. Ya. Shvets, I. F. Chervonyy, and Yu. V. Holovko, Materialy i Komponenty Elektroniky (Materials and Components of Electronics) (Zaporizhzhya: ZDIA: 2011) (in Ukrainian).
  25. V. S. Bushkova, J. Nano- and Electronic Physics, 7, No. 3: 03021 (2015).
  26. Y. S. Wang, P. J. Thomas, and P. O'Brien, J. Phys. Chem. B, 110: 21412 (2006). Crossref
  27. N. Kislov, S. S. Srinivasan, Yu. Emirov, and E. K. Stefanakos, Mater. Sci. Eng. B, 153, Nos. 1–2: 70 (2008). Crossref
  28. M. Sultan and R. Singh, J. Phys. D: Appl. Phys., 42: 115306 (2009). Crossref
  29. C. Cheng, Phys. Rev. B, 78: 132403 (2008). Crossref
  30. C. Cheng and C.S. Liu, J. Phys.: Conf. Ser., 145: 012028 (2009). Crossref