Effect of Dispersion of Copper-Iodide Particles on the Electrical Properties of Composites Based on Polychlortrifluoroethylene

R. V. Mazurenko, S. M. Makhno, G. M. Gunya, P. P. Gorbyk

O.O. Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine

Received: 02.02.2016. Download: PDF

The electrophysical properties of the CuI—polychlorotrifluoroethylene nanocomposites are studied in the microwave and low-frequency ranges at a temperature of 295 K. As shown, the polymer composites containing nanosize copper iodide have higher values of the complex permittivity and conductivity twice as high in comparison with a system containing micron CuI.

Key words: composite materials, disperse filler, interfacial interaction, nanoscale copper iodide.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i05/0647.html

DOI: https://doi.org/10.15407/mfint.38.05.0647

PACS: 72.80.Tm, 77.22.Ch, 77.84.Lf, 81.07.Bc, 81.07.Pr, 81.40.Tv, 82.35.Np

Citation: R. V. Mazurenko, S. M. Makhno, G. M. Gunya, and P. P. Gorbyk, Effect of Dispersion of Copper-Iodide Particles on the Electrical Properties of Composites Based on Polychlortrifluoroethylene, Metallofiz. Noveishie Tekhnol., 38, No. 5: 647—656 (2016) (in Ukrainian)


REFERENCES
  1. A. I. Gusev, Nanomaterialy, Nanostruktury, Nanotekhnologii [Nanomaterials, Nanostructures, Nanotechnologies] (Moscow: Fizmatlit: 2005) (in Russian).
  2. I. P. Suzdalev, Nanotekhnologiya: Fiziko-Khimiya Nanoklasterov, Nanostruktur i Nanomaterialov [Nanotechnology: Physics and Chemistry of Nanoclusters, Nanostructures and Nanomaterials] (Moscow: KomKniga: 2006) (in Russian).
  3. N. G. Rambidi and A. V. Berezkin, Fizicheskie i Khimicheskie Osnovy Nanotekhnologiy [Physical and Chemical Bases of Nanotechnologies] (Moscow: Fizmatlit: 2008) (in Russian).
  4. B. Nowack and T. D. Bucheli, Environmental Pollution, 150, No. 1: 5 (2007). Crossref
  5. M. A. Margulis, Osnovy Zvukokhimii [Fundamentals of Sonochemistry] (Moscow: Vysshaya Shkola: 1984) (in Russian).
  6. A. Ziarati, J. Safaei-Ghomi, and S. Rohani, Ultrasonics Sonochemistry, 20, No. 4: 1069 (2013). Crossref
  7. A. N. Gruzintsev and V. N. Zagorodnev, Fizika i Tekhnika Poluprovodnikov, 46, No. 8: 975 (2012) (in Russian).
  8. M. H. Makled, E. Sheha, T. S. Shanap, and M. K. El-Mansy, J. Adv. Res., 4, No. 6: 531 (2013). Crossref
  9. Yo. Ma, M. Gu, Sh. Huang, X. Liu, B. Liu, and Ch. Ni, Materials Letters, 100: 166 (2013). Crossref
  10. A. R. Zainun, M. H. Mamat, U. M. Noor, and M. Rusop, Journal of Nanomaterials, 2012: 637637 (2012).
  11. Rukovodstvo po Neorganicheskomu Sintezu (Ed. G. Brauer) (Moscow: Mir: 1985) (in Russian).
  12. J. Safaei-Ghomi, S. Rohani, and A. Ziarati, J. Nanostructures, 2: 79 (2012). Crossref
  13. L. N. Ganjuk, V. D. Ignatkov, S. M. Mahno, and P. M. Soroka, Ukr. Fiz. Zhurn., 40, No. 6: 627 (1995) (in Russian).
  14. L. P. Pavlov, Metody Opredeleniya Parametrov Poluprovodnikovykh Materialov [Methods for Measuring the Parameters of Semiconductor Materials] (Moscow: Vysshaya Shkola: 1987) (in Russian).
  15. A. Guinier, Rentgenografiya Kristallov (Moscow: Gos. Izd-vo Fiz.-Mat. Lit.: 1995) (Russian translation).
  16. A. G. Bannov and S. M. Shilovskaya, 17 Mezhdunarodnaya Nauchno-Prakticheskaya Konferentsiya Studentov, Aspirantov i Molodykh Uchenykh 'Sovremennye Tekhnika i Tekhnologii' (18–22 April, 2011, Tomsk) (in Russian).
  17. Yu. Yu. Tarasevich, Perkolyatsiya: Teoriya, Prilozheniya, Algoritmy [Percolation: Theory, Application, Algorithms] (Moscow: Editorial URSS: 2002) (in Russian).
  18. G. A. Lushcheykin, Metody Issledovaniya Elektricheskikh Svoystv Polimerov [Methods for Studying the Electrical Properties of Polymers] (Moscow: Khimiya: 1988) (in Russian).
  19. A. M. Magerramov, M. A. Nuriev, I. A. Veliev, and S. I. Safarova, Elektronnaya Obrabotka Materialov [Electronic Processing of Materials], 46, No. 2: 92 (2010) (in Russian).