Microwave Properties and Conductivity Anisotropy of Oriented Multiwalled Carbon Nanotube/Epoxy Composites

L. L. Vovchenko, V. V. Zagorodnii, O. S. Yakovenko, L. Yu. Matzui, V. V. Oliynyk, V. L. Launets

Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine

Received: 02.02.2016. Download: PDF

Epoxy composites with the aligned network of multiwalled carbon nanotubes generated by applying AC electric field during the curing process are fabricated. Industrial nanotubes with diameter of 10—30 nm and length of 10—30 $\mu$m are used. The nanotubes’ concentration is varied from 0.2 to 1.0% wt. DC conductivity is measured for two orientations of multiwalled carbon nanotubes’ network–parallel and perpendicular to the direction of the instrument current. Similarly, complex microwave permittivity and conductivity are investigated for parallel and perpendicular orientations of multiwalled carbon nanotubes’ network to the microwave electric field. Measured DC conductivity of order of 10$^{-7}$—10$^{-5}$ S/m contrasts with microwave conductivity of order of 10$^{-2}$—10$^{-1}$ S/m. The conductivity anisotropy varies from 18 to 26 for DC measurements and from 1.26 to 2.04 for microwave ones. Such difference in anisotropies can be attributed to the essential inequality of the actual electron transport mechanisms under DC and microwave electric fields.

Key words: carbon nanotubes, polymer composites, DC conductivity, anisotropy, dielectric permittivity, absorption loss.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i05/0657.html

DOI: https://doi.org/10.15407/mfint.38.05.0657

PACS: 72.80.Tm, 77.22.Ch, 78.70.Gq, 81.05.U-, 81.07.De, 81.07.Pr, 82.35.Np

Citation: L. L. Vovchenko, V. V. Zagorodnii, O. S. Yakovenko, L. Yu. Matzui, V. V. Oliynyk, and V. L. Launets, Microwave Properties and Conductivity Anisotropy of Oriented Multiwalled Carbon Nanotube/Epoxy Composites, Metallofiz. Noveishie Tekhnol., 38, No. 5: 657—668 (2016)

  1. R. H. Friend, Conductive Polymers II: From Science to Applications (Shawbury: Rapra Technology Ltd.: 1993).
  2. V. Erokhin, M. K. Ram, and Ö. Yavuz, The New Frontiers of Organic and Composite Nanotechnology (Oxford: Elsevier: 2011).
  3. S. Maity, K. Singha, P. Debnath, and M. Singh, J. Safety Eng., 2: 11 (2013).
  4. V. Udmale, D. Mishra, R. Gadhave, D. Pinjare, and R. Yamgar, Orient. J. Chem., 29: 927 (2013). Crossref
  5. M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang, M. Luo, and C. Li, Nanoscale, 6: 3796 (2014). Crossref
  6. J. Li, P. C. Ma, W. S. Chow, C. K. To, B. Z. Tang, and J.-K. Kim, Adv. Funct. Mater., 17: 3207 (2007). Crossref
  7. J. Z. Kovacs, B. S. Velagala, K. Schulte, and W. Bauhofer, Compos. Sci. Technol., 67: 922 (2007). Crossref
  8. D. S. Bychanok, M. V. Shuba, P. P. Kuzhir, S. A. Maksimenko, V. V. Kubarev, M. A. Kanygin, O. V. Sedelnikova, L. G. Bulusheva, and A. V. Okotrub, J. Appl. Phys., 114: 114304 (2013). Crossref
  9. O. Malkina, H. Mahfuz, K. Sorge, A. Rondinone, J. Chen, K. More, S. Reeves, and V. Rangari, AIP Advances, 3: 042104 (2013). Crossref
  10. A. I. Oliva-Avilés, F. Avilés, V. Sosa, A. I. Oliva, and F. Gamboa, Nanotechnology, 23: 465710 (2012). Crossref
  11. M. Monti, M. Natali, L. Torre, and J. M. Kenny, Carbon, 50: 2453 (2012). Crossref
  12. L. An and C. R. Friedrich, J. Appl. Phys., 105: 074314 (2009). Crossref
  13. A. I. Oliva-Avilés, F. Avilés, V. Sosa, and G. D. Seidel, Carbon, 69: 342 (2014). Crossref
  14. M. S. Kumar, T. H. Kim, S. H. Lee, S. M. Song, J. W. Yang, K. S. Nahm, and E.-K. Suh, Chem. Phys. Lett., 383: 235 (2004). Crossref
  15. R. Chan, C. Fung, and W. Li, Nanotechnology, 15: S672 (2004). Crossref
  16. S.-J. Ma and W.-L. Guo, Chinese Phys. Lett., 25: 270 (2008). Crossref
  17. Y.-F. Zhu, C. Ma, W. Zhang, R.-P. Zhang, N. Koratkar, and J. Liang, J. Appl. Phys., 105: 054319 (2009). Crossref
  18. O. Yakovenko, L. Matzui, L. Vovchenko, and A. Zhuravkov, phys. status solidi (a), 211: 2718 (2014). Crossref
  19. L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics. Measurement and Materials Characterization (New York: Wiley: 2004). Crossref
  20. M. Pozar, Microwave Engineering (Hoboken: Wiley: 2005).
  21. Yu. S. Perets, L. Yu. Matzui, L. L. Vovchenko, Yu. I. Prylutskyy, P. Scharff, and U. Ritter, J. Mater. Sci., 49: 2098 (2014). Crossref
  22. B. E. Springett, Phys. Rev. Lett., 31, Iss. 24: 1463 (1973). Crossref
  23. J. H. Koo, Polymer Nanocomposites: Processing, Characterization, and Applications (New York: McGraw-Hill: 2006), p. 235.
  24. M. Buitelaar, T. N. A. Bachtold, M. Iqbal, and C. Schonenberger, Phys. Rev. Lett., 88: 156801 (2002). Crossref
  25. L. L. Vovchenko, V. V. Zagorodniy, L. Yu. Matzui, V. L. Launets, and V. V. Oliynyk, Proc. of 21st International Crimean Conference 'CriMiCo Microwave and Telecommunication Technology’ (September 12–16, 2011, Sevastopol, Ukraine), p. 775.