Precipitation Reactions in Nickel—Hydrogen System: ab initio Study

S. M. Teus

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 23.03.2016. Download: PDF

A type of precipitation reactions in the nickel—hydrogen system is studied by means of first-principle atomic calculations. The concentration dependence of solution enthalpy is calculated, and its second derivative is shown to be negative within the hydrogen-to-nickel ratios, H/Ni, of 0.03—0.75. This result suggests that a spinodal decomposition of the solid solution occurs resulting in formation of the hydrogen-rich and hydrogen-depleted phases. The obtained hydrogen concentrations in these conjugated phases are in consistency with the available experimental data. The effects of hydrogen concentration on the electronic structure and its correlation with thermodynamic stability of phases confirm that spinodal decomposition in the nickel— hydrogen system has the electronic origin. The obtained results are at variance with the widely accepted concept of the nickel hydride.

Key words: spinodal decomposition, nickel—hydrogen system, hydride, ab initio calculations.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i06/0737.html

DOI: https://doi.org/10.15407/mfint.38.06.0737

PACS: 61.50.Lt, 61.72.Dd, 64.75.Nx, 71.15.Mb, 71.15.Nc, 81.30.Mh, 82.60.Lf

Citation: S. M. Teus, Precipitation Reactions in Nickel—Hydrogen System: ab initio Study, Metallofiz. Noveishie Tekhnol., 38, No. 6: 737—750 (2016)


REFERENCES
  1. B. Baranowski, Z. Szklarska-Smialowska, and M. Smialowski, Bull. Acad. Pol. Sci., 6: 179 (1958).
  2. B. Baranowski, Bull. Acad. Pol. Sci., 7: 907 (1959).
  3. B. Baranowski, Bull. Acad. Pol. Sci., 7: 891 (1959).
  4. A. Janko, Bull. Acad. Pol. Sci., 8: 131 (1960).
  5. St. Rashkov, M. Monev, and I. Tomov, Surf. Technol., 16: 203 (1982). Crossref
  6. I. Tomov, M. Monev, M. Mikhailov, and S. Rashkov, J. Appl. Electrochem., 22: 82 (1992). Crossref
  7. B. Baranowski and Z. Szklarska-Smialowska, Electrochimica Acta, 9: 1497 (1964). Crossref
  8. B. Baranowski, Bull. Akad. Pol. Sci., 7: 897 (1959).
  9. A. Janko and P. Michel, Compt. Rend., 251: 1001 (1960).
  10. H. Jarmolowicz and M. Smialowski, J. Catalysis, 1: 165 (1962). Crossref
  11. H. J. Bauer and E. Schmidbauer, Z. Phys., 164: 367 (1961). Crossref
  12. V. E. Antonov, J. Alloys Compd., 330–332: 110 (2002). Crossref
  13. Y. Fukai, S. Yamatomo, S. Harada, and M. Kanazawa, J. Alloys. Compd., 372: L4 (2004). Crossref
  14. A. Janko, Naturwissenschaften, 47: 225 (1960). Crossref
  15. B. Baranowski and S. M. Filipek, J. Alloys. Compd., 404–406: 2 (2005). Crossref
  16. A. Bourret, A. Lasalmonie, and S. Naka, Scr. Metal., 20: 861 (1986). Crossref
  17. P. Olsson, I. A. Abrikosov, and J. Wallenius, Phys. Rev. B, 73: 104416 (2006). Crossref
  18. P. Hohenberg and W. Kohn, Phys. Rev., 136: B864 (1964). Crossref
  19. W. Kohn and L. J. Sham, Phys. Rev., 140: A1133 (1965). Crossref
  20. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria: Techn. Universität Wien: 2001).
  21. J. P. Perdew, S. Burke, and M. Ernzernhoff, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  22. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 13: 5188 (1976). Crossref
  23. F. D. Murnaghan, Proc. Natl. Acad. Sci., 30: 244 (1944). Crossref
  24. K. P. Huber and G. Hertzberg, Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Norstrand Reinhold: 1979). Crossref
  25. K. Parlinski, Software Phonon (Cracow: 2010).
  26. K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett., 78: 4063 (1997). Crossref
  27. K. Kunc and R. M. Martin, Phys. Rev. Lett., 48: 406 (1982). Crossref
  28. M. T. Yin and M. L. Cohen, Phys. Rev. B, 26: 3259 (1982). Crossref
  29. E. O. Wollan, J. W. Cable, and W. C. Koehler, J. Phys. Chem. Solids, 24: 1141 (1963). Crossref
  30. J. W. Cable, E. O. Wollan, and W. C. Koehler, J. Phys., 25: 460 (1964). Crossref
  31. C. Papastaikoudis, B. Lengeler, and W. Jager, J. Phys. F: Met. Phys., 13: 2257 (1983). Crossref
  32. W. R. Robertson, Z. Metallkd., 64: 436 (1973).
  33. K. Yamakawa and F. E. Fujita, Jpn. J. Appl. Phys., 16: 1747 (1977). Crossref
  34. K. Zeng, T. Klassen, W. Oelerich, and R. Bormann, J. Alloys. Compd, 283: 151 (1999). Crossref
  35. R. D. Doherty, Physical Metallurgy (Amsterdam: Elsevier Science BV: 1996), p. 1365.
  36. R. Juskenas, A. Selskis, and V. Kadziauskiene, Electrochim. Acta, 43: 1903 (1998). Crossref
  37. D. N. Movchan, S. M. Teus, G. S. Mogilny, and V. G. Gavriljuk, Metallofiz. Noveishie Tekhnol., 35, No. 6: 821 (2013).
  38. C. San Marchi, B. P. Somerday, and S. L. Robinson, Int. J. Hydrogen Energy, 32: 100 (2007). Crossref
  39. B. Alling, A. Karimi, and I. A. Abrikosov, Surf. Coat. Technol., 203: 883 (2008). Crossref
  40. H. Jones, J. Phys. Radium, 23: 637 (1962). Crossref
  41. H. Jones, Proc. R. Soc. Lond. A, 144: 225 (1934). Crossref
  42. P. A. Korzhavyi, E. A. Smirnova, I. E. Eibel`man, I. A. Abrikosova, A. V. Ruban, and Yu. Kh. Vekilov, Phys. Solid. State, 39: 515 (1997). Crossref
  43. E. A. Smirnova, P. A. Korzhavyi, Yu. Kh. Vekilov, B. Johansson, and I. A. Abrikosov, Phys. Rev. B, 64: 020101(R) (2001). Crossref