Acoustic and Elastic Properties of Components of a Wall of the VVER-440 Vessel

O. I. Zaporozhets, N. A. Dordienko, V. A. Mykhailovsky

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 18.05.2016. Download: PDF

Using own-design automated pulse equipment at frequencies of 10—30 MHz, the bulk-wave velocities of ultrasonic (US) in the different geometric directions and on various sections of specimens made of archival fragment of the VVER-440 vessel wall (15CrMFA and 08Cr18N10T steels) and 15Cr2NMFA RPV (Reactor Power Vessel) steel of the VVER-1000 vessel as well as density ($\rho$) of the specimens are measured. Using the values of $v_{ij}$ and $\rho$, the acoustic and elastic anisotropy of the alloys and their homogeneity are studied, and the texture US analysis of the two layers of the wall cladding of the VVER-440 vessel is executed. In contrast to the specimens of RPV steels of both reactors, in the cladding of 08Cr18N10T steel, the acoustic and elastic inhomogeneity, anisotropy of US velocities (up to 26%), and corresponding elastic moduli (up to 52%) caused by the presence of clearly determined inhomogeneous texture close to axial one are ascertained. By the temperature dependence of US longitudinal velocity $v_{l}(T)$ in the specimens of the wall components of the VVER-440 vessel, dependences of elastic modules $E$, $G$ and $B$ on $T$ are determined in overall temperature range of 0—300°C for a direction normal to the wall surface. The $v_{l}(T)$ and $E(T)$ dependences were used in previous studies as calibration data. As noted, most of the results are published for the first time, and they must be taken into account in the analysis of the mechanical properties of the VVER vessels and for using in methods of nondestructive ultrasonic testing.

Key words: 15CrMFA, 08Cr18N10T, 15Cr2NMFA steels, bulk-wave ultrasonic velocities, elastic properties, elastic anisotropy, texture, inhomogeneity.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i06/0795.html

DOI: https://doi.org/10.15407/mfint.38.06.0795

PACS: 06.60.Mr, 28.41.Qb, 43.58.+z, 62.20.D-, 81.40.Ef, 81.40.Jj, 81.70.Cv

Citation: O. I. Zaporozhets, N. A. Dordienko, and V. A. Mykhailovsky, Acoustic and Elastic Properties of Components of a Wall of the VVER-440 Vessel, Metallofiz. Noveishie Tekhnol., 38, No. 6: 795—813 (2016) (in Russian)


REFERENCES
  1. R. K. Melekhov and V. I. Pokhmurs'kyy, Konstruktsiyni Materialy Energetychnogo Obladnannya. Vlastyvosti, Degradatsiya [Constructional Materials of Power Equipment. Properties, Degradation] (Kyiv: Naukova Dumka: 2003) (in Ukrainian).
  2. O. I. Zaporozhets, A. V. Lichko, V. V. Nemoshkalenko, and A. I. Nosar, Met. Phys. Adv. Tech., 17: 961 (1999).
  3. O. I. Zaporozhets, M. O. Dordiyenko, V. A. Mykhailovsky, V. B. Molodkin, A. I. Nosar, Yu. O. Frolov, and A. P. Shpak, Zbirnyk Naukovykh Statey za Rezul'tatamy 2004–2006 Rokiv Programy N.A.S. of Ukraine 'Resurs' [Collection of Articles with Results Obtained in 2004–2006 within the Program of the N.A.S. of Ukraine 'Resource'] (Kyiv: E. O. Paton Electric Welding Institute, N.A.S. of Ukraine: 2006), p. 212 (in Ukrainian).
  4. M. O. Dordienko, O. I. Zaporozhets, V. A. Mykhailovskyy, and V. B. Molodkin, Metallofiz. Noveishie Tekhnol., 34, No. 7: 949 (2012) (in Russian).
  5. O. I. Zaporozhets, S. A. Kotrechko, N. A. Dordienko, V. A. Mykhailovsky, and A. V. Zatsarnaya, Problems of Atomic Science and Technology, 96, No. 2: 197 (2015).
  6. M. O. Dordiyenko, O. I. Zaporozhets, R. O. Mazmanyan, V. A. Mykhailovsky, Yu. O. Frolov, and A. P. Shpak, Problemy Resursu i Bezpeky Ekspluatatsiyi Konstruktsiy, Sporud ta Mashyn: Zbirnyk Naukovykh Statey za Rezul'tatamy, Otrymanymy u 2007–2009 Rokakh [Problem of Life Time and Safety of Structures, Buildings and Machinery: Collection of Articles with Results Obtained in 2007–2009] (Kyiv: E. O. Paton Electric Welding Institute, N.A.S. of Ukraine: 2009), p. 299 (in Ukrainian).
  7. D. S. Kuperman and K. J. Reimann, IEEE Transactions on Sonics and Ultrasonics, SU-27, No. 1: 7 (1980). Crossref
  8. C. M. Sayers, J. Phys. D: Appl. Phys., 15, No. 11: 2157 (1982). Crossref
  9. A. J. Allen, M. T. Hutchings, C. M. Sayers, D. R. Allen, and R. L. Smith, J. Appl. Phys., 54, No. 2: 555 (1983). Crossref
  10. R. B. Thompson, J. F. Smith, S. S. Lee, and G. C. Johnson, Metall. Trans. A, 20: 2431 (1989). Crossref
  11. M. Hirao and N. Hara, Appl. Phys. Lett., 50, No. 20: 1411 (1987). Crossref
  12. E. Holms and D. Beasley, J. Iron Steel Inst., 200: 283 (1962).
  13. J. Lewandowski, Ultrasonics, 24, No. 2: 73 (1986). Crossref
  14. M. Hirao, H. J. Fukuoka, K. Fujisawa, and R. Murayama, Metall. Trans. A, 20: 2385 (1989). Crossref
  15. A. A. Khlybov, V. G. Vasil'ev, and A. L. Uglov, Zavodskaya Laboratoriya. Diagnostika Materialov, 73, No. 12: 46 (2007) (in Russian).
  16. A. A. Khlybov, V. G. Vasil'ev, and A. L. Uglov, Atomnaya Energiya, 106, No. 1: 31 (2009) (in Russian).
  17. A. A. Khlybov and A. L. Uglov, Trudy Nizhegorodskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. R. E. Alekseeva, No. 1: 220 (2013) (in Russian).