Influence of the Type of Auxetic Effect on the Elastic and Inelastic Properties of Beryllium

M. D. Rarans’ky, A. V. Oleynich-Lysyuk, O. Yu. Tashchuk, Ye. I. Kurek

Yuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi Str., 50012 Chernivtsi, Ukraine

Received: 02.07.2015; final version - 28.06.2016. Download: PDF

In this article, the features of the behaviour of the elastic (elastic compliance and effective shear modulus) and inelastic (low-frequency internal friction (Q$^{-1}$)) characteristics of magnesium-thermal beryllium condensate (MTC Be) in the temperature ranges with different types of auxetic effect are investigated. The influence of both the value and the sign of the Poisson’s ratios on the temperature dependences of the rate of dislocations at microplastic deformation in beryllium are calculated within the scope of the dislocation-disclination model. As shown, the changing nature of the motion of defects under cyclic deformation of this metal with increasing temperature can be successfully described taking into account both the additive contribution of twins, edge and screw dislocations moving in the field of external stresses and strains, which create by both point defects and forest dislocations.

Key words: internal friction, elastic compliance, rate of dislocations, type of auxetic effect, Poisson’s ratios, beryllium.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i07/0923.html

DOI: https://doi.org/10.15407/mfint.38.07.0923

PACS: 61.72.Hh, 61.72.Lk, 62.20.de, 62.20.dj, 62.40.+i, 81.40.Gh, 81.40.Jj

Citation: M. D. Rarans’ky, A. V. Oleynich-Lysyuk, O. Yu. Tashchuk, and Ye. I. Kurek, Influence of the Type of Auxetic Effect on the Elastic and Inelastic Properties of Beryllium, Metallofiz. Noveishie Tekhnol., 38, No. 7: 923—934 (2016) (in Ukrainian)


REFERENCES
  1. N. D. Rarans'ky, V. N. Balazyuk, and M. M. Gun'ko, Fizyka i Khimiya Tverdogo Tila, 16, No. 1: 34 (2015) (in Ukrainian).
  2. I. I. Papirov and G. F. Tikhinskiy, Fizicheskoe Metallovedenie Berilliya [Physical Metallography of Beryllium] (Moscow: Atomizdat: 1968) (in Russian).
  3. W. D. Rowland and J. S. White, J. Phys. F: Metal Phys., 2, No. 2: 231 (1972). Crossref
  4. R. V. Gol'dshteyn, V. A. Gorodtsov, and D. S. Lisovenko, Pis'ma o Materialakh, 3, No. 1: 7 (2011) (in Russian).
  5. M. V. Klassen-Neklyudova, Mekhanicheskoe Dvoynikovanie Kristallov [Mechanical Twinning of Crystals] (Moscow: AN SSSR: 1960) (in Russian).
  6. I. I. Papirov and G. F. Tikhinskiy, Plasticheskaya Deformatsiya Berilliya [Plastic Deformation of Beryllium] (Moscow: Atomizdat: 1973) (in Russian).
  7. N. N. Novikov, Struktura i Strukturno-Chuvstvitel'nye Svoystva Real'nykh Kristallov [The Structure and Structure-Sensitive Properties of Real Crystals] (Kiev: Vishcha Shkola: 1983) (in Russian).
  8. V. I. Bashmakov and T. S. Chikova, Plastifikatsiya i Uprochnenie Metallicheskikh Kristallov pri Mekhanicheskom Dvoynikovanii [Plasticization and Hardening of Metallic Crystals during Mechanical Twinning] (Minsk: UP 'Tekhnoprint': 2001) (in Russian).
  9. A. V. Oleynich-Lysyuk and N. D. Rarans'ky, Fizika Tverdogo Tela, 54, Iss. 3: 417 (2012) (in Russian).