Influence of Alternating Magnetic Field on Physical and Mechanical Properties of Crystals

V. I. Karas$^{1,2}$, E. V. Karasyova$^{1}$, A. V. Mats$^{1}$, V. I. Sokolenko$^{1}$, A. M. Vlasenko$^{1}$, V. E. Zakharov$^{3,4}$

$^{1}$National Science Center Kharkov Institute of Physics and Technology, NAS of Ukraine, 1, Akademicheskaya Str., 61108 Kharkov, Ukraine
$^{2}$V.N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
$^{3}$P.N. Lebedev Physical Institute of the RAS, 53 Leninskiy Ave., 119991 Moscow, Russia
$^{4}$L.D. Landau Institute for Theoretical Physics of the RAS, 1-A Academician Semenov Ave., 142432 Chernogolovka, Russia

Received: 13.06.2016. Download: PDF

The results of the investigation of creep characteristics and activation parameters of polycrystalline nickel (of 99.996% purity) plastic flow at the temperature of 77 K are presented. The influence of nonstationary magnetic field with strength of 500 Oe (harmonic (50 Hz) and monopolar pulses of the same frequency) on the nickel creep characteristics is studied. We have deliberately conducted experimental investigations of the influence of nonstationary magnetic field of alternating and constant sign at constant temperature in order to estimate the contribution to the dislocations’ mobility from the interaction of dislocations with the mobile domain boundaries as well as from the heat effects connected with the induction electric field. The proposed model of electroplastic effect (EPE) suggests the following mechanism of weakening under the action of electric field. Electric field gives energy to conductivity electron subsystem, making it thermodynamically nonequilibrium. Nonequilibrium electrons while interacting with acoustic phonons transfer more energy to short-wave part of the phonon spectrum. Short-wave phonons due to large stress gradient effectively detach dislocations from stoppers. Experimental results qualitatively match with the data obtained after numerical calculations.

Key words: magnetoplastic effect, alternating magnetic field, dislocation mobility, creep rate, ferromagnetic crystal, nonequilibrium electron and phonon subsystem.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i08/1027.html

DOI: https://doi.org/10.15407/mfint.38.08.1027

PACS: 61.72.Ff, 61.72.Hh, 62.20.Hg, 63.20.kd, 63.20.kp, 75.80.+q, 83.60.Np

Citation: V. I. Karas, E. V. Karasyova, A. V. Mats, V. I. Sokolenko, A. M. Vlasenko, and V. E. Zakharov, Influence of Alternating Magnetic Field on Physical and Mechanical Properties of Crystals, Metallofiz. Noveishie Tekhnol., 38, No. 8: 1027—1055 (2016)


REFERENCES
  1. S. Hayashi, S. Takahashi, and M. Yamamoto, J. Phys. Soc. Jpn., 25, No. 2: 910 (1968); J. Phys. Soc. Jpn., 30: 381 (1971). Crossref
  2. I. A. Gindin, I. S. Lavrinenko, and I. M. Neklyudov, JETP Lett., 16, No. 6: 341(1972); Fizika Tverdogo Tela, 15, No. 4: 636 (1973) (in Russian).
  3. O. A. Troitskii and V. I. Likhtman, Dokl. Akad. Nauk SSSR, 148, No. 2: 332 (1963) (in Russian).
  4. V. E. Gromov, V. Ya. Tsellermayer, and V. I. Bazaykin, Elektrostimulirovannoye Volocheniye: Analiz Protsessa i Mikrostruktura (Moscow: Nedra: 1996) (in Russian).
  5. V. I. Spitsyn and O. A. Troitskii, Elektroplasticheskaya Deformatsiya Metallov (Moscow: Nauka: 1985) (in Russian).
  6. V. V. Stolyarov, Vestnik Nauchno-Tekhnicheskogo Razvitiya, No. 67: 35 (2013) (in Russian).
  7. R. B. Morgunov, Physics–Uspekhi, 47, No. 2: 131 (2004). Crossref
  8. I. M. Nekludov, V. M. Azhazha, K. A. Yushchenko, V. I. Sokolenko, A. V. Mats, V. M. Netesov, and V. V. Vartanov, Fizika i Khimiya Obrabotki Materialov, No. 1: 84 (2011) (in Russian).
  9. V. P. Lebedev and S. V. Savych, Vestnik KhNU. Seriya 'Fizika', No. 962, Iss. 15: 88 (2011) (in Russian).
  10. I. A. Gindin, S. F. Kravchenko, and Ya. D. Starodubov, Pribory i Tekhnika Eksperimenta, No. 3: 269 (1963) (in Russian).
  11. V. K. Aksenov, I. A. Gindin, V. P. Lebedev, and Ya. D. Starodubov, Fizika Nizkikh Temperatur, 6, No. 1: 118 (1980) (in Russian).
  12. V. K. Aksenov, I. A. Gindin, E. I. Druinskii, E. V. Karaseva, and Ya. D. Starodubov, Fizika Nizkikh Temperatur, 3, No. 7: 922 (1977) (in Russian).
  13. I. M. Nekludov, Ya. D. Starodubov, and V. I. Sokolenko, Ukrayinskyy Fizychnyy Zhurnal, 50, No. 8A: A113 (2005) (in Russian).
  14. C. R. Chow and E. Nembach, Acta Met., 24, No. 5: 453 (1976). Crossref
  15. V. K. Aksenov, I. A. Gindin, E. V. Karaseva, and Ya. D. Starodubov, Fizika Nizkikh Temperatur, 4, No. 10: 1316 (1978) (in Russian).
  16. D. N. Bolshutkin, V. A. Desnenko, and V. Ya. Illichev, Fizika Nizkikh Temperatur, 2, No. 2: 256 (1976) (in Russian).
  17. D. N. Bolshutkin, V. A. Desnenko, and V. Ya. Illichev, Fizika Nizkikh Temperatur, 2, No. 12: 1544 (1976) (in Russian).
  18. M. A. Vasiliev, Usp. Fiz. Met., 8, No. 1: 65 (2007) (in Russian). Crossref
  19. M. I. Kaganov, V. Ya. Kravchenko, and V. D. Natsik, Physics–Uspekhi, 16, No. 6: 878 (1974). Crossref
  20. I. M. Neklyudov and N.V. Kamyshanchenko, Fizicheskie Osnovy Prochnosti i Plastichnosti Metallov. Part 2: Defekty v Kristallakh (Moscow–Belgorod: Izd-vo Belgorodskogo GU: 1997) (in Russian).
  21. A. I. Landau and Yu. I. Gofman, Fizika Tverdogo Tela, 16, No. 11: 3427 (1974) (in Russian).
  22. A. Granato and K. Lücke, J. Appl. Phys., 27, No. 5: 583 (1956). Crossref
  23. V. I. Dubinko, V. I. Karas, V. F. Klepikov, P. N. Ostapchuk, and I. F. Potapenko, Voprosy Atomnoy Nauki i Tekhniki. Seriya 'Fizika Radiatsionnykh Povrezhdenij i Radiatsionnoye Materialovedenie', 4–2 (94): 158 (2009) (in Russian).
  24. V. E. Zakharov and V. I. Karas', Physics–Uspekhi, 56, No. 1: 49 (2013). Crossref
  25. V. I. Karas', A. M. Vlasenko,V. N. Voyevodin, V. I. Sokolenko, and V. E. Zakharov, East Europe Physical Journal, 1, No. 1: 40 (2014).
  26. N. Perrin and H. Budd, Phys. Rev. Lett., 28, No. 26: 1701 (1972). Crossref
  27. V. I. Karas', A. M. Vlasenko, V. I. Sokolenko, and V. E. Zakharov, JETP, 121, No. 3: 499 (2015). Crossref
  28. V. I. Karas', A. M. Vlasenko, A. G. Zagorodniy, and V. I. Sokolenko, Proc. Int. Conf. MSS-14 'Mode Conversion, Coherent Structure and Turbulence' (Nov. 24–27, 2014) (Moscow: LENAND: 2014), p. 64.
  29. V. E. Zakharov, V. I. Karas', and A. M. Vlasenko, Proc. Int. Conf. MSS-14 'Mode Conversion, Coherent Structure and Turbulence' (Nov. 24–27, 2014) (Moscow: LENAND: 2014), p. 34.
  30. V. I. Karas', V. I. Sokolenko, E. V. Karasyova, A. V. Mats, and A. M. Vlasenko, Problems of Atomic Science and Technology. Series: Plasma Electronics and New Acceleration Methods, No. 4 (98): 277 (2015).
  31. A. F. Sprecher, S. L. Mannan, and H. Conrad, Acta Mater., 31, No. 7: 1145 (1986). Crossref
  32. M. Molotskii and V. Fleurov, Phys. Rev. B, 52, No. 22: 829 (1995). Crossref
  33. M. Molotskii and V. Fleurov, Phys. Rev. Lett., 78, No. 14: 2779 (1997). Crossref
  34. M. I. Molotskii, Mater. Sci. Eng. A, 287: 248 (2000). Crossref
  35. S. R. Bilyk, K. T. Ramesh, and T. W. Wright, J. Mechanics Phys. Solids, 53: 525 (2005). Crossref
  36. J. Unger, M. Stiemer, L. Walden, F. Bach, H. Blum, and B. Svendsen, Proc. 2nd Int. Conf. on High Speed Forming (20–21 March, 2006, Dortmund) (Germany, Dortmund: Institut für Umformtechnik und Leichtbau: 2006), p. 23.