Influence of Type and Degree of a Severe Plastic Deformation on Structure and Properties of Cast Al—Sc Alloys

A. L. Berezina$^{1}$, T. O. Monastyrska$^{1}$, О. A. Davydenko$^{2}$, O. A. Molebny$^{1}$, S. S. Polishchuk$^{1}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine
$^{2}$Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 46 Nauky Ave., UA-03680 Kyiv, Ukraine

Received: 16.06.2016. Download: PDF

The effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminium alloys is studied. A conventional hydrostatic extrusion (HE) with a constant deformation direction and an equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction are chosen for the cases of monotonous and nonmonotonous SPD, respectively. Model cast hypoeutectic Al—0.3% Sc alloys and hypereutectic Al—0.6% Sc alloys alloyed with Ta and Ti are chosen in the study. As demonstrated, the SPD of these alloys result in the segregation of the material in active and inactive zones, which form a banded structure. The active zones are shown to be bands of localized plastic deformation. The distance between zones is found to be independent on the degree of accumulated strain and is in the range of 0.6—1 $\mu$m. A dynamic recrystallization in the active zones is observed using TEM and is accompanied by the formation of disclinations, deformation bands, low-angle and high-angle boundaries, i.e. rotational deformation modes are developed. A dynamic recrystallization occurs more intensively during the non-monotonous deformation as compared with the monotonous one that is confirmed by the reduction of both stress and texture degree in materials after ECAH.

Key words: alloyed Al—Sc alloys, severe plastic deformation, hydrostatic extrusion, equal-channel angular hydroextrusion, dynamic recrystallization, disclinations, deformation bands, low-angle and high-angle boundaries, ageing, supersaturated solid solution.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i08/1057.html

DOI: https://doi.org/10.15407/mfint.38.08.1057

PACS: 61.72.-y, 62.20.Qp, 81.10.Jt, 81.20.Hy, 81.40.Lm, 81.70.Bt, 83.50.Uv

Citation: A. L. Berezina, T. O. Monastyrska, О. A. Davydenko, O. A. Molebny, and S. S. Polishchuk, Influence of Type and Degree of a Severe Plastic Deformation on Structure and Properties of Cast Al—Sc Alloys, Metallofiz. Noveishie Tekhnol., 38, No. 8: 1057—1076 (2016) (in Russian)


REFERENCES
  1. L. B. Zuev, Uspehi Fiziki Metallov, 16: 35 (2015) (in Russian). Crossref
  2. L. B. Zuev, Ann. Phys., 16, No. 4: 286 (2007). Crossref
  3. L. B. Zuev, V. I. Danilov, and S. A. Barannikova, Fizika Makrolokalizatsii Plastitcheskogo Techeniya (Novosibirsk: Nauka: 2008) (in Russian).
  4. V. V. Rybin, Bol'shie Plasticheskie Deformatsii i Razrushenie Metallov (Moscow: Metallurgiya: 1986) (in Russian).
  5. V. A. Likhachev, V. E. Panin, E. Eh. Zasimchuk et al., Kooperativnye Deformatsionnye Protsessy i Lokalizatsiya Deformatsii (Kiev: Naukova Dumka: 1989) (in Russian).
  6. V. E. Panin, Yu. V. Grin'aev, V. I. Danilov et al., Strukturnye Urovni Plasticheskoy Deformatsii i Razrusheniya (Novosibirsk: Nauka: 1990) (in Russian).
  7. T. G. Langdon, Mater. Sci. Eng. A, 462: 3 (2007). Crossref
  8. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci., 51: 881 (2006). Crossref
  9. R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci., 53: 893 (2008). Crossref
  10. V. Spuskanyuk, O. Davydenko, A. Berezina, O. Gangalo, L. Sennikova, and M. Tikhonovsky, D. Spiridonov, J. Mater. Process. Technol., 210: 1709 (2010). Crossref
  11. R. Hielscher and H. Schaeben, J. Appl. Crystallogr., 41: 1024 (2008). Crossref
  12. D. Balzar, Defect and Microstructure Analysis from Diffraction (International Union of Crystallography Monographs on Crystallography, No. 10) (Eds. R. L. Snyder, H. J. Bunge, and J. Fiala) (New York: Oxford University Press: 1999), p. 94.
  13. M. H. Shaeri, M. T. Salehi, S. H. Seyyedein, M. R. Abutalebi, and J. K. Park, J. Alloys Compd., 576: 350 (2013). Crossref
  14. A. Gholinia, P. Bate, and P. B. Prangnell, Acta Mater., 50: 2121 (2002). Crossref
  15. C. M. Cepeda-Jiminez, J. M. Garcia-Infanta, O. A. Ruano, and F. Carreno, J. Alloys Compd., 546: 253 (2013). Crossref
  16. S. G. Chowdhurry, C. Xu, and T. G. Langdon, Mater. Sci. Eng. A, 473: 219 (2008). Crossref
  17. M. H. Shaeri, M. T. Salehi, S. H. Seyyedein, M. R. Abutalebi, and J. K. Park, Trans. Nonferrous Met. Soc. China, 25: 1367 (2015). Crossref
  18. S. Li, I. Beyerlein and M. A. M. Bourke, Mater. Sci. Eng. A, 394: 66 (2005). Crossref
  19. L. S. Toth, Adv. Eng. Mater., 5: 308 (2003). Crossref
  20. S. K. Baik, Y. Estrin, R. J. Hellmig, H. T. Jeong, H.-G. Brokmeier, and H. S. Kim, Z. Metallkd., 94: 1189 (2003). Crossref
  21. W. H. Huang, L. Chang, P. K. Kao, and C. P. Chang, Mater. Sci. Eng. A, 307: 113 (2001). Crossref