An Atomic Scale Study of Structural and Electronic Properties for $\alpha$-Zirconium with Single Vacancies and Vacancy Clusters

V. O. Kharchenko$^{1}$, D. O. Kharchenko$^{1}$, X. Wu$^{2}$, B. Wen$^{2}$, L. Wu$^{2}$, W. Zhang$^{2}$

$^{1}$Institute of Applied Physics, NAS of Ukraine, 58 Petropavlivska Str., 40000 Sumy, Ukraine
$^{2}$The First Institute, Nuclear Power Institute of China, 328, the 1st Section, Changshundadao Road, Shuangliu, Chengdu, China

Received: 25.05.2016. Download: PDF

We study structural, electronic, and energy properties of pure zirconium with isolated vacancies and their clusters. We discuss the lattice constant change in pure zirconium with different concentrations of isolated vacancy and different configurations of di- and trivacancy. We analyse the stability of small vacancy clusters containing divacancy characterized by different distances between two vacancies and trivacancy of different configuration. As shown, the lattice constant decreases with an increase in the concentration of isolated vacancies, whereas single vacancy formation energy increases indicating that isolated vacancies will tend to form clusters. By studying stability of small vacancy clusters containing di- and trivacancies, it is shown that, if the distance between vacancies in a cluster does not exceed the first-neighbours’ distance, the corresponding vacancy cluster will be stable. In the opposite case, the interaction between vacancies in divacancy promotes formation of isolated vacancies, whereas the trivacancy will decompose into divacancy and isolated vacancy or three isolated vacancies, depending on distances between vacancies in trivacancy. Distributions of electronic density and density of states for pure zirconium with single vacancy as well as the most stable configurations of di- and trivacancies are studied in detail.

Key words: ab initio calculations, linearized augmented plane wave method, vacancy, binding energy, electronic properties.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i09/1195.html

DOI: https://doi.org/10.15407/mfint.38.09.1195

PACS: 61.50.Lt, 61.72.Bb, 61.72.jd, 71.15.Ap, 71.15.Mb, 71.15.Nc, 71.20.Be, 73.22.Dj

Citation: V. O. Kharchenko, D. O. Kharchenko, X. Wu, B. Wen, L. Wu, and W. Zhang, An Atomic Scale Study of Structural and Electronic Properties for $\alpha$-Zirconium with Single Vacancies and Vacancy Clusters, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1195—1212 (2016)


REFERENCES
  1. G. S. Was, Fundamentals of Radiation Materials Science (Berlin–Heidelberg: Springer-Verlag: 2007).
  2. M. A. Kirk, I. H. Robertson, M. L. Jenkins, C. A. English, T. J. Black, and J. S. Vertano, J. Nucl. Mater., 149: 21 (1987). Crossref
  3. C. A. English, J. Nucl. Mater., 108–109: 104 (1982). Crossref
  4. W. J. Phythian, J. Nucl. Mater., 159: 219 (1988). Crossref
  5. E. Weinan, Principles of Multiscale Modeling (Cambridge: Cambridge University Press: 2011).
  6. V. O. Kharchenko, Metallofiz. Noveishie Tekhnol., 33, No. 5: 577 (2011).
  7. V. O. Kharchenko, D. O. Kharchenko, and A. V. Dvornichenko, J. Nano- Electron. Phys., 4, No. 2: 02034 (2012).
  8. V. O. Kharchenko and D. O. Kharchenko, Condens. Matter Phys., 16, No. 1: 13801 (2013). Crossref
  9. V. O. Kharchenko and S. V. Kokhan, J. Nano-Electron. Phys., 7, No. 2: 02014 (2015).
  10. T. Diaz de la Rubia, K. Smalinskas, R. S. Averback, I. M. Robertson, H. Hseih, and R. Beriedek, Mater. Research Soc. Symp. Proc., 138: 29 (1989). Crossref
  11. V. G. Kaplnos and P. A. Platonov, Rad. Effects, 103: 45 (1987). Crossref
  12. V. O. Kharchenko and D. O. Kharchenko, Eur. Phys. J. B, 85: 383 (2012). Crossref
  13. V. O. Kharchenko and D. O. Kharchenko, Condens. Matter Phys., 16: 33001 (2013). Crossref
  14. D. O. Kharchenko, V. O. Kharchenko, and A. I. Bashtova, Ukr. J. Phys., 58, No. 10: 993 (2013). Crossref
  15. D. O. Kharchenko, V. O. Kharchenko, and A. I. Bashtova, Rad. Effects Def. Solids, 169, No. 5: 418 (2014). Crossref
  16. V. O. Kharchenko and D. O. Kharchenko, Phys. Rev. E, 89: 042133 (2014). Crossref
  17. D. O. Kharchenko, V. O. Kharchenko, S. V. Kokhan, and I. O. Lysenko, Ukr. J. Phys., 57, No. 10: 1069 (2012).
  18. K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys. Rev. Lett., 88: 245701 (2002). Crossref
  19. A. Jaatinen, C. V. Achim, K. R. Elder et al., Phys. Rev. E, 80: 031602 (2009). Crossref
  20. J. Berry, M. Garnt, and K. R. Elder, Phys. Rev. E, 73: 031609 (2006). Crossref
  21. D. Douglas, Metallurgy of Zirconium (Moscow: Atomizdat: 1976) (Russian translation).
  22. A. D. Becke, J. Chem. Phys., 98: 5648 (1993). Crossref
  23. K. Burke, J. Werschnik, and E. K. U. Gross, J. Chem. Phys., 123: 062206 (2005). Crossref
  24. O. K. Andersen, Phys. Rev. B, 12: 3060 (1975). Crossref
  25. A. D. Becke, Phys. Rev. A, 38: 3098 (1988). Crossref
  26. D. C. Langreth and M. J. Mehl, Phys. Rev. B, 28: 1809 (1983). Crossref
  27. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luits, Wien2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology: 2001).
  28. J. Slater and H. C. Verma, Phys. Rev., 34: 1293 (1929). Crossref
  29. P. W. Atkins, Molecular Quantum Mechanics. Parts I and II: An Introduction to Quantum Chemistry (Oxford: Oxford University Press: 1977).
  30. J. C. Slater, Phys. Rev., 81: 385 (1951). Crossref
  31. J. C. Slater, Phys. Rev., 91: 528 (1953). Crossref
  32. P. Hohenberg and W. Kohn, Phys. Rev., 136: B864 (1964). Crossref
  33. W. Kohn and L. J. Sham, Phys. Rev., 140: A1133 (1965). Crossref
  34. O. Gunnarsson and B. I. Lundquist, Phys. Rev. B, 13: 4274 (1976). Crossref
  35. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys., 61: 689 (1989). Crossref
  36. See on http://www.wien2k.at/
  37. C. Varvenne, O. Mackain, and E. Clouet, Acta Mater., 78: 65 (2014). Crossref
  38. G. Verite, F. Willaime, and C. C. Fu, Solid State Phenom., 129: 75 (2007). Crossref
  39. M. I. Mendelev and G. J. Ackland, Philos. Mag. Lett., 87: 349 (2007). Crossref