The Theoretical Analysis of Phase-Formation Processes in Amorphous Alloys of Fe—Zr System

I. V. Plyushchay$^{1}$, T. L. Tsaregrads’ka$^{1}$, O. O. Kalenyk$^{1}$, O. I. Plyushchay$^{2}$

$^{1}$Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
$^{2}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 30.05.2016. Download: PDF

The thermodynamic and ab initio molecular-dynamics approaches are applied to analyse the phase transitions in the Fe—Zr system. First-principles molecular-dynamics simulations of the amorphization and crystallization processes in the Fe—Zr system are presented. The atomic positions in the Fe$_{29}$Zr$_{3}$ supercell are modelled by simulating annealing with usage of the density functional theory in the generalized gradient approximation. Changes in the electron density of states for the Fe$_{29}$Zr$_{3}$ supercell under liquid—amorphous—crystalline phase transitions are discussed. The most marked difference between the electronic spectra of the liquid and amorphous phases is a pseudogap at the Fermi level that is consistent with the Nagel—Tauc electronic criterion of the amorphous metallic-alloy thermal stability. Further simulating annealing in the isothermal/isenthalpic ensemble under the higher temperatures leads to the drastically changes of the electronic spectrum and rearrangement of atoms, which we assign to the first stage of the amorphous-alloy crystallization. The concentration dependence of relative integral Gibbs’ free energy for the initial amorphous $\alpha$-phase are constructed; this dependence has a specific S-shaped appearance (due to both the great value of relative volume change during the formation of the alloy and the negative value of entropy) that indicates a tendency of alloys to phase separation. The thermodynamic method confirms that the processes of phase formation in binary alloys of Fe—Zr system pass in two stages: at first, the processes of phase separation into two amorphous phases by means of the spinodal mechanism are observed; then, each phase of amorphous ones resulting from separation begins to crystallise. The concentration area of amorphization of Fe—Zr system alloys is calculated; the results are in a good agreement with experimental data.

Key words: phase transitions, phase separation, amorphous alloys, electronic structure, ab initio molecular dynamics, relative integral Gibbs’ free energy.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i09/1233.html

DOI: https://doi.org/10.15407/mfint.38.09.1233

PACS: 61.43.Dq, 64.70.pe, 64.75.Nx, 71.15.Mb, 71.15.Pd, 71.20.Be, 71.23.Cq, 82.60.Lf

Citation: I. V. Plyushchay, T. L. Tsaregrads’ka, O. O. Kalenyk, and O. I. Plyushchay, The Theoretical Analysis of Phase-Formation Processes in Amorphous Alloys of Fe—Zr System, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1233—1247 (2016) (in Ukrainian)


REFERENCES
  1. S. M. McDeavitt, D. P. Abraham, J. Y. Park, and D. D. Keiser, JOM, 49: 29 (1997). Crossref
  2. S. M. McDeavitt, D. P. Abraham, and J. Y. Park, J. Nucl. Mater., 257: 21 (1998). Crossref
  3. M. S. Granovsky and D. Arias, J. Nucl. Mater., 229: 29 (1996). Crossref
  4. F. Stein, G. Sauthoff, and M. Palm, J. Phase Equilibria, 23: 480 (2002). Crossref
  5. G. E. Abrosimov and A. S. Aronin, Fizika Tverdogo Tela, 40, No. 10: 1768 (1998) (in Russian).
  6. J. P.Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  7. X. Gonzea, B. Amadond, P.-M. Angladee, J.-M. Beukena, F. Bottind, P. Boulangera, F. Brunevalq, D. Calistej, R. Caracasl, M. Côtéo, T. Deutschj, L. Genovesei, Ph. Ghosezk, M. Giantomassia, S. Goedeckerc, D. R. Hamannm, P. Hermetp, F. Jolletd, G. Jomardd, S. Lerouxd, M. Mancinid, S. Mazevetd, M. J. T. Oliveiraa, G. Onidab, Y. Pouillona, T. Rangela, G.-M. Rignanesea, D. Sangallib, R. Shaltafa, M. Torrentd, M. J. Verstraetea, G. Zerahd, and J. W. wanzigerf, Computer Phys. Comm., 180: 2582 (2009). Crossref
  8. H. B. Schlegel, J. Comput. Chem., 3: 214 (1982). Crossref
  9. K. V. Ashok, P. Modak, A. Svane, and N. E. Christensen, Phys. Rev. B, 83: 134205 (2011). Crossref
  10. S. R. Nagel, G. B. Fisher, G. Tauc, and B. G. Bardley, Phys. Rev. B, 13: 3284 (1976). Crossref
  11. O. I. Nakonechnaya, I. V. Plyushchai, M. P. Semen'ko, and N. I. Zakharenko, Physics of Metals and Metallography, 90, No. 5: 439 (2000).
  12. V. I. Lysov, T. L. Tsaregradskaya, O. V. Turkov, G. V. Saenko, and V. V. Yarysh, Zhurnal Fizicheskoy Khimii, 81, No. 10: 1765 (2007) (in Russian).
  13. V. I. Lysov, T. L. Tsaregrads’ka, O. V. Turkov, G. V. Saenko, and V. V. Yarysh, Zhurnal Fizychnykh Doslidzhen’, 12, No. 3: 5 (2008) (in Ukrainian).
  14. Yu. A. Kunits’ky, V. I. Lysov, T. L. Tsaregrads’ka, V. Ye. Fedorov, and O. V. Turkov, Metallofiz. Noveishie Tekhnol., 25, No. 12: 1563 (2003) (in Russian).