Formation of Structure and Properties of Composite Coatings TiB$_{2}$—TiC—Steel Obtained by Overlapping of Electric-Arc Surfacing and Self-Propagating High-Temperature Synthesis

D. L. Lutsak$^{1}$, P. M. Prysyazhnyuk$^{1}$, M. O. Karpash$^{1}$, V. M. Pylypiv$^{2}$, V. O. Kotsyubynsky$^{1}$

$^{1}$Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Str., 76019 Ivano-Frankivsk, Ukraine
$^{2}$Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine

Received: 06.06.2016. Download: PDF

The features of structure formation, phase constitution, and wear resistance of composite coatings obtained by combining of arc surfacing with self-propagating high-temperature synthesis (SHS) with using powder electrode containing a mixture of Ti and B$_{4}$C are investigated. The coatings consist of a steel matrix, eutectic Fe + TiC, and uniform distributed reinforcing particles of TiB$_{2}$ and TiC, which vary significantly in size and form. High hardness (of 84—85 HRA) and high wear resistance of coatings in sliding friction over monolithic abrasive are caused by high content (of $\cong$ 50% vol.) of strengthening phases and features of its morphology.

Key words: self-propagating high-temperature synthesis, surfacing, powder electrode, TiB$_{2}$—TiC-coatings, composites, abrasive wear resistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i09/1265.html

DOI: https://doi.org/10.15407/mfint.38.09.1265

PACS: 62.20.Qp, 68.55.-a, 81.05.Mh, 81.05.Ni, 81.20.Vj, 81.40.Pq, 81.65.Lp, 81.70.Jb

Citation: D. L. Lutsak, P. M. Prysyazhnyuk, M. O. Karpash, V. M. Pylypiv, and V. O. Kotsyubynsky, Formation of Structure and Properties of Composite Coatings TiB$_{2}$—TiC—Steel Obtained by Overlapping of Electric-Arc Surfacing and Self-Propagating High-Temperature Synthesis, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1265—1278 (2016) (in Russian)


REFERENCES
  1. M. Roy, Surface Engineering for Enhanced Performance Against Wear (Wien: Springer: 2013). Crossref
  2. N. Yüksel and S. Şahin, Materials and Design, 58: 491 (2014). Crossref
  3. C. W. Kuo, C. Fan, S. H. Wu, and W. Wu, Materials Transactions, 48, No. 9: 2324 (2007). Crossref
  4. E. V. Sukhovaya, Sverkhtverdye Materialy, No. 5: 29 (2013) (in Russian).
  5. R. Chotěborský, P. Hrabě, M. Müller, J. Savková, M. Jirka, and M. Navrátilová, Research in Agricultural Engineering, 55, No. 3: 101 (2009).
  6. G. V. Samsonov and I. M. Vinnitskiy, Tugoplavkie Soedineniya: Spravochnik [High-Melting Compounds: Handbook] (Moscow: Metallurgiya: 1976) (in Russian).
  7. F. Ye, M. Hojamberdiev, Y. Xu, L. Zhong, H. Yan, and Z. Chen, Materials Chemistry and Physics, 147, No. 3: 823 (2014). Crossref
  8. A. L. Borisova, Sovmestimost' Tugoplavkikh Soedineniy s Metallami i Grafitom: Spravochnik [Compatibility of High-Melting Compounds with Metals and Graphite: Handbook] (Kiev: Naukova Dumka: 1985) (in Russian).
  9. D. A. Goncharuk and G. A.Baglyuk, Powder Metallurgy and Metal Ceramics, 51, Nos. 9–10: 547 (2013). Crossref
  10. Z. T. Wang, X. H. Zhou, and G. G. Zhao, Transactions of Nonferrous Metals Society of China, 18, No. 4: 831 (2008). Crossref
  11. W. Xibao, W. Xiaofeng, and S. Zhongquan, Surf. Coat. Technol., 192, No. 2: 257 (2005). Crossref
  12. F. Zhou, H. Y. Yang, and L. H. He, Applied Mechanics and Materials, 341: 162 (2013). Crossref
  13. D. L. Lutsak, P. M. Prysyazhnyuk, and M. O. Karpash, Metallurgical and Mining Industry, No. 2: 126 (2016).
  14. A. L. Borisova, Yu. S. Borisov, L. K. Shvedova, Yu. A. Kocherzhinskiy, and V. I. Nechiporenko, Poroshkovaya Metallurgiya, No. 9: 47 (1980) (in Russian).
  15. S. J. Lee and Y. K. Lee, Scr. Mater., 52, No. 10: 973 (2005). Crossref
  16. R. G. Munro, J. Research of the National Institute of Standards and Technology, 105, No. 5: 709 (2000). Crossref
  17. G. V. Samsonov, G. Sh. Upadkhaya, and V. S. Neshpor, Fizicheskoe Materialovedenie Karbidov [Physical Materials Science of Carbides] (Kiev: Naukova Dumka: 1974) (in Russian).
  18. Y. F. Yang, H. Y. Wang, J. G. Wang, and Q. C. Jiang, J. American Ceramic Society, 91, No. 11: 3813 (2008). Crossref
  19. S. Chaudhary, S. Khaple, V. S. Prasad, A. S. Rao, and R. G. Baligidad, J. American Ceramic Society, 68, No. 5: 809 (2015).
  20. V. V. Ivzhenko, O. N. Kaidash, G. F. Sarnavskaya, S. N. Dub, V. A. Popov, L. M. Bologova, and S. A. Lisovenko, J. Superhard Materials, 33, No. 1: 34 (2011). Crossref
  21. S. A. Saltykov, Stereometricheskaya Metallografiya [Stereometric Metallography] (Moscow: Metallurgiya: 1976) (in Russian).
  22. B. Cochepin, V. Gauthier, D. Vrel, and S. Dubois, J. Crystal Growth, 304, No. 2: 481 (2007). Crossref
  23. A. F. Lisovskiy, Formirovanie Struktury Kompozitsionnykh Materialov pri Obrabotke Metallicheskimi Rasplavami [Structure Formation of Composite Materials under Processing of Metal Melts] (Kyiv: Naukova Dumka: 2008) (in Russian).
  24. A. I. Belyy, Avtomaticheskaya Svarka, No. 12: 20 (2010) (in Russian).
  25. Y. A. Kryl and P. M. Prysyazhnyuk, J. Superhard Materials, 35, No. 5: 292 (2013). Crossref