Competition of Voiding and Kirkendall Shift during Compound Growth in Reactive Diffusion–Alternative Models

T. V. Zaporozhets, N. V. Storozhuk, A. M. Gusak

The Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., 18031 Cherkasy, Ukraine

Received: 29.07.2016. Download: PDF

The simultaneous growth of both the phase-layer thickness and the void sizes during the intermetallic-compound formation with different mobilities of components and with a narrow concentration-range of homogeneity is described. This is done with account of competition for extra vacancies between dislocation steps and interfaces (K-sinks leading to Kirkendall shift) and voids (F-sinks providing Frenkel voiding). Three alternative models for three alternative places of preferential voids’ formation are formulated and compared. Possibilities of control over Kirkendall shift versus Frenkel voiding competition are discussed.

Key words: diffusion, reaction, phase-growth law, voids, intermetallic compounds.



PACS: 61.72.Bb, 61.72.jd, 61.72.Qq, 64.75.Op, 66.30.Ny, 68.35.Dv, 68.35.Fx

Citation: T. V. Zaporozhets, N. V. Storozhuk, and A. M. Gusak, Competition of Voiding and Kirkendall Shift during Compound Growth in Reactive Diffusion–Alternative Models, Metallofiz. Noveishie Tekhnol., 38, No. 10: 1279—1292 (2016)

  1. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, and A. P. Alivisatos, Science, 304: 711 (2004). Crossref
  2. A. M. Gusak, T. V. Zaporozhets, K. N. Tu, and U. Gösele, Philos. Magazine, 85, No. 36: 4445 (2005). Crossref
  3. H. J. Fan, U. Gösele, and M. Zacharias, Small, 3, No. 10: 1660 (2007). Crossref
  4. A. M. Gusak and T. V. Zaporozhets, J. Physics: Condensed Matter, 21, No. 41: 415303 (2009). Crossref
  5. A. M. Gusak and K. N. Tu, Acta Mater., 57, No. 11: 3367 (2009). Crossref
  6. K. N. Tu, Solder Joint Technology (New York: Springer: 2007).
  7. K. N. Tu, Acta Metallurgica, 21, No. 4: 347 (1973). Crossref
  8. Ya. E. Geguzin, Diffuzionnaya Zona [The Diffusion Zone] (Moscow: Nauka: 1979) (in Russian).
  9. Ya. E. Geguzin, Y. S. Kaganovskiy, L. M. Paritskaya, and V. I. Solunskiy, Fiz. Met. Metalloved., 47, No. 4: 127 (1979) (in Russian).
  10. A. M. Gusak and N. V. Storozhuk, Phys. Met. Metallogr., 114, No. 3: 197 (2013). Crossref
  11. N. V. Storozhuk and A. M. Gusak, Metallofiz. Noveishie Tekhnol., 35, No. 6: 807 (2013) (in Ukrainian).
  12. L. Yina and P. Borgesen, J. Mater. Res., 26, No. 3: 455 (2010). Crossref
  13. G. Ross, V. Vuorinen, and M. Paulasto-Kröckel, J. Alloys Compd., 677: 127 (2016). Crossref
  14. A. M. Gusak, T. V. Zaporozhets, Y. O. Lyashenko, S. V. Kornienko, M. O. Pasichnyy, and A. S. Shirinyan, Diffusion-Controlled Solid State Reactions: in Alloys, Thin-Films, and Nanosystems (New York: John Wiley and Sons: 2010). Crossref
  15. A. M. Gusak and M. V. Yarmolenko, J. Appl. Phys., 73, No. 10: 4881 (1993). Crossref
  16. A. V. Nazarov and K. P. Gurov, Fiz. Met. Metalloved., 37, No. 3: 41 (1974) (in Russian).
  17. A. M. Gusak, Metallofizika, 14, No. 9: 3 (1992).