A Study of Atomic Displacements Produced in Cascades in Irradiated $\alpha$-Zr by Using Molecular Dynamics Simulations

Yu. M. Ovcharenko$^{1}$, S. V. Kokhan$^{1}$, D. O. Kharchenko$^{1}$, X. Wu$^{2}$, B. Wen$^{2}$, L. Wu$^{2}$, W. Zhang$^{2}$

$^{1}$Institute of Applied Physics, NAS of Ukraine, 58 Petropavlivska Str., 40000 Sumy, Ukraine
$^{2}$The First Institute, Nuclear Power Institute of China, 328, the 1st Section, Changshundadao Road, Shuangliu, Chengdu, China

Received: 25.05.2016. Download: PDF

We study the cascades’ formation, development and annealing in pure zirconium crystals irradiated in different irradiation conditions. Statistical and geometric properties of cascades are studied in details by varying sample temperature, energy of primary knocked atoms, and direction of their motion. A possibility of channelling at cascades development is shown; it results in formation of crowdions. A change in statistical properties of the crystal during cascades’ development and a relaxation time of cascades are studied. A possibility of formation of different-type defects after cascades’ annealing is discussed.

Key words: molecular dynamics, embedded atom method, cascade, point defects.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i10/1303.html

DOI: https://doi.org/10.15407/mfint.38.10.1303

PACS: 31.15.xv, 34.20.-b, 61.72.Bb, 61.72.Cc, 61.72.jd, 61.72.jj, 61.80.Az, 61.85.+p

Citation: Yu. M. Ovcharenko, S. V. Kokhan, D. O. Kharchenko, X. Wu, B. Wen, L. Wu, and W. Zhang, A Study of Atomic Displacements Produced in Cascades in Irradiated $\alpha$-Zr by Using Molecular Dynamics Simulations, Metallofiz. Noveishie Tekhnol., 38, No. 10: 1303—1320 (2016)


REFERENCES
  1. G. S. Was, Fundamentals of Radiation Materials Science (Berlin–Heidelberg: Springer-Verlag: 2007).
  2. D. Walgraef, Spatio-Temporal Pattern Formation (New York–Berlin–Heidelberg: Springer-Verlag: 1996).
  3. W. Jager, P. Ehrhart, and W. Shchilling, Nonlinear Phenomena in Materials Science (Eds. G. Marten and I. P. Kubin) (Aedermannsorrf, Switzerland: Trans. Tech. Publications: 1988).
  4. J. H. Evans, Nature, 229: 403 (1971). Crossref
  5. A. Jostobns and K. Farrel, Rad. Effects, 15: 217 (1972). Crossref
  6. J. O. Steigler and K. Farrel, Scr. Metall., 8: 651 (1974). Crossref
  7. D. Walgraef, J. Lauzeral, and N. M. Ghoniem, Phys. Rev. B, 53: 14782 (1996). Crossref
  8. F. Kh. Mirzoev, V. Ya. Panchenko, and L. A. Shelepin, Physics-Uspekhi, 39: 1 (1996). Crossref
  9. E. Weinan, Principles of Multiscale Modeling (Cambridge: Cambridge University Press: 2011).
  10. C. Varvenne, O. Mackain, and E. Clouet, Acta Mater., 78: 65 (2014). Crossref
  11. V. O. Kharchenko and D. O. Kharchenko, Cond. Matter Phys., 16, No. 1: 13801 (2013). Crossref
  12. V. O. Kharchenko and S. V. Kokhan, J. Nano- Electron. Phys., 7, No. 2: 012014 (2015).
  13. K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys. Rev. Lett., 88: 245701 (2002). Crossref
  14. A. Jaatinen, C. V. Achim, K. R. Elder, and T. Ala-Nissila, Phys. Rev. E, 80: 031602 (2009). Crossref
  15. J. Berry, M. Garnt, and K. R. Elder, Phys. Rev. E, 73: 031609 (2006). Crossref
  16. D. Kharchenko, V. Kharchenko, and I. Lysenko, Physica A, 389: 3356 (2010). Crossref
  17. D. Kharchenko, V. Kharchenko, and I. Lysenko, Cent. Eur. J. Phys., 9, No. 3: 698 (2011).
  18. D. O. Kharchenko, V. O. Kharchenko, S. V. Kokhan, and I. O. Lysenko, Ukr. Fiz. Zhurn., 57, No. 10: 1069 (2012).
  19. A. Onuki, Phase Transition Dynamics (Cambridge: Cambridge University Press: 2002). Crossref
  20. A. Minami and A. Onuki, Phys. Rev. B, 70: 184114 (2004). Crossref
  21. A. Onuki, Phys. Rev. E, 68: 061502 (2003). Crossref
  22. A. Minami and A. Onuki, Phys. Rev. B, 72: 100101 (2005). Crossref
  23. D. O. Kharchenko, O. M. Shchokotova, I. O. Lysenko, and V. O. Kharchenko, Rad. Eff. Def. Sol., 170, Nos. 7–8: 584 (2015). Crossref
  24. M. Haataja, J. Muller, A. D. Rutenberg, and M. Grant, Phys. Rev. B, 65: 165414 (2002). Crossref
  25. M. Haataja and F. Leonard, Phys. Rev. B, 69: 081201 (2004). Crossref
  26. M. Haataja, J. Mahon, N. Provatas, and F. Leonard, Appl. Phys. Lett., 87: 251901 (2005). Crossref
  27. D. O. Kharchenko, O. M. Schokotova, A. I. Bashtova, and I. O. Lysenko, Cond. Matter Phys., 18, No. 2: 23003 (2015). Crossref
  28. D. O. Kharchenko, V. O. Kharchenko, I. O. Lysenko, and S. V. Kokhan, Phys. Rev. E, 82: 061108 (2010). Crossref
  29. V. O. Kharchenko and D. O. Kharchenko, Cond. Matter Phys., 14, No. 2: 23602 (2011). Crossref
  30. http://lammps.sandia.gov/
  31. M. I. Mendelev and G. J. Ackland, Philos. Mag. Lett., 87: 349 (2007). Crossref
  32. M. S. Daw and M. I. Baskes, Phys. Rev. B, 29: 6443 (1984). Crossref
  33. Ch. Kittel, Introduction to Solid State Physics (New York: Wiley: 2004).
  34. J. D. Honeycutt and H. C. Andersen, J. Phys. Chem., 91, No. 19: 4950 (1987). Crossref
  35. D. Faken and H. Jonsson, Comput. Mater. Sci., 2, No. 2: 279 (1994). Crossref
  36. A. Stukowski, Modelling Simul. Mater. Sci. Eng., 20: 045021 (2012). Crossref
  37. J. H. Li, X. D. Dai, S. H. Liang, K. P. Tai, Y. Kong, and B. X. Liu, Physics Reports, 455: 1 (2008). Crossref
  38. P. Qing, J. Wei, L. Jie, C. Xiao-Jia, H. Hanchen, G. Fei, and D. Suvranu, Scientific Reports, 4: 5735 (2014). Crossref