Regularities of the Localized Plastic Flow Viewed as Consequences of Elastoplastic Invariant of Strain

L. B. Zuev$^{1,2}$

$^{1}$Institute of Strength Physics and Materials Science SB RAS, 2/4 Akademicheskiy Ave., Tomsk, 634021, Russia
$^{2}$Tomsk State University, 36 Lenina Ave., Tomsk, 634050, Russia

Received: 10.05.2016. Download: PDF

Regularities of generation of macroscopic phase autowaves of localized plasticity are investigated for linear stages of work hardening. As shown, the characteristics of autowaves and ultrasound waves form the invariant value. Its occurrence is governed by the behaviour of entropy in the course of autowaves’ generation. The consequences of this invariant are considered, and its role and descriptive possibilities for the development of localized plastic flow are discussed.

Key words: deformation, plasticity, elasticity, defects, localization, hardening, autowaves.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i10/1335.html

DOI: https://doi.org/10.15407/mfint.38.10.1335

PACS: 05.70.Ln, 62.20.F-, 62.50.-p, 81.40.Jj, 81.40.Lm, 83.10.-y, 83.50.-v

Citation: L. B. Zuev, Regularities of the Localized Plastic Flow Viewed as Consequences of Elastoplastic Invariant of Strain, Metallofiz. Noveishie Tekhnol., 38, No. 10: 1335—1349 (2016) (in Russian)


REFERENCES
  1. L. B. Zuev, V. I. Danilov, and S.A. Barannikova, Fizika Macrolokaliizatsii Plasticheskogo Techeniya [Plastic Flow Macrolocalization Physics] (Novosibirsk: Nauka: 2008) (in Russian).
  2. E. P. Zemskov and A. Yu. Loskutov, JETP, 134, No. 3: 406 (2008).
  3. V. A. Davydov, V. S. Zykov, and A. S. Mikhailov, Usp. Fiz. Nauk, 161, No. 1: 45 (1991) (in Russian). Crossref
  4. L. B. Zuev, Uspekhi Fisiki Met., 16, No. 1: 35 (2015) (in Russian). Crossref
  5. L. B. Zuev, Bull. Rus. Acad. Sci. Physics, 78, No.10: 957 (2014) (in Russian). Crossref
  6. H. Kolsky, Stress Waves in Solids (Oxford: Dover Phoenix Edition: 2003).
  7. L. M. Shestopalov, Deformirovanie Metallov i Volny Plastichnosti v Nikh [Deformation of Metals and Plasticity Waves in Them] (Moscow–Leningrad: AS of USSR Publ.: 1958) (in Russian).
  8. U. Messerschmidt, Dislocation Dynamics during Plastic Deformation (Berlin: Springer: 2010). Crossref
  9. D. Caillard and J. L. Martin, Thermally Activated Mechanisms in Crystal Plasticity (Oxford: Elsevier: 2003).
  10. Yu. L. Klimontovich, Vvedenie v FIziku Otkrytikh System [An Introduction into Open System Physics] (Moscow: Yanus-K Publ.: 2002) (in Russian).
  11. H. Haken, Information and Self-Organization (Berlin: Springer: 1988).
  12. L. D. Landau and E. M. Lifshits, Gidrodinamika [Fluid Mechanics] (Moscow: Nauka Publ.: 1988) (in Russian).
  13. V. L. Gilyarov and A. I. Slutsker, Tech. Phys., 80, No. 5: 94 (2010).
  14. A. L. Roitburd, Fizika Deformatsionnogo Uprochneniya Monokristallov (Kyiv: Naukova Dumka: 1972), p. 5 (in Russian).
  15. L. B. Zuev and B. S. Semukhin, Philos. Mag. A, 82, No. 10: 1183 (2002). Crossref
  16. A. M. Kosevich and A. S. Kovalev, Vvedenie v Nelineinuyu Fizicheskuyu Mekhaniku [An Introduction into Nonlinear Physical Mechanics] (Kyiv: Naukova Dumka: 1989) (in Russian).
  17. J. J. Gilman, J. Appl. Phys., 36, No. 11: 2772 (1965). Crossref
  18. V. Z. Bengus, E. D. Tabachnikova, and V. N. Ostroverkh, Fiz. Tverdogo Tela [Phys. Solid State], 15, No. 12: 3452 (1973) (in Russian).
  19. A. M. Kosevitch, Fizicheskaya Mekhanika Real'nykh Kristallov [The Physical Mechanisc of Real Crystals] (Kyiv: Naukova Dumka: 1981) (in Russian).
  20. L. B. Zuev and V. I. Danilov, Philos. Mag. A, 79, No. 1: 43 (1999). Crossref
  21. P. Landau, R. Z. Shneck, G. Makov, and A. Venkert, IOP Conf. Ser.: Mat. Sci. Eng., 3, No. 1: 012004 (2009). Crossref