Prediction of Stable Composition for High-Entropy Refractory Alloys

A. B. Melnick, V. K. Soolshenko

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 05.07.2016. Download: PDF

The common approach for evaluation of stability of multicomponent substitutional solid solutions using thermodynamic, mechanical, and topological parameters of the constituent elements is developed. The high-temperature systems based on refractory elements (W, Ta, Mo, Nb, V, Ti, Zr, Hf, Cr) are investigated using this approach. Optimal compositions for high-entropy alloys are obtained, and influence of various factors in the formation of stable alloys is described. As shown, the most resistant alloys have non-equiatomic element-contents’ ratios. The agreement between element distribution in experimental alloys and predicted stable compositions are obtained for the W— Ta—Mo—Nb and W—Ta—Mo—Nb—V systems.

Key words: high-entropy alloys, refractory alloys, solid solution, thermodynamics.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i10/1395.html

DOI: https://doi.org/10.15407/mfint.38.10.1395

PACS: 05.10.Ln, 05.70.Ce, 64.10.+h, 65.40.gd, 81.05.Zx, 81.30.Bx, 81.30.Fb, 82.60.Lf

Citation: A. B. Melnick and V. K. Soolshenko, Prediction of Stable Composition for High-Entropy Refractory Alloys, Metallofiz. Noveishie Tekhnol., 38, No. 10: 1395—1405 (2016)


REFERENCES
  1. M. H. Tsai and J. W. Yeh, Mater. Res. Lett., 2: 107 (2014). Crossref
  2. J. W. Yeh, Annales De Chimie. Science des Materiaux, 31: 633 (2006). Crossref
  3. X. Yang and Y. Zhang, Mater. Chemistry and Physics, 132: 233 (2012). Crossref
  4. S. Guo, Q. Hu, C. Ng, and C. T. Liu, Intermetallics, 41: 96 (2013). Crossref
  5. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw et al., Prog. Mater. Sci., 61: 1 (2014). Crossref
  6. Y. Zhang, Z. P. Lu, S. G. Ma, and P. K. Liaw, MRS Communications, 4: 57 (2014). Crossref
  7. S. Ranganathan, Current Science, 85: 1404 (2003).
  8. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun et al., Adv. Eng. Mater., 6: 299 (2004). Crossref
  9. B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng. A, 375–377: 213 (2004). Crossref
  10. J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, Mater. Sci. Forum, 560: 1 (2007). Crossref
  11. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, Intermetallics, 18: 1758 (2010). Crossref
  12. O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, Intermetallics, 19: 698 (2011). Crossref
  13. O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, and C. F. Woodward, J. Alloys Compd., 509: 6043 (2011). Crossref
  14. O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, and C. F. Woodward, J. Mater. Sci., 47: 4062 (2012). Crossref
  15. O. N. Senkov and C. F. Woodward, Mater. Sci. Eng. A, 529: 311 (2011). Crossref
  16. O. N. Senkov, S. V. Senkova, C. Woodward, and D. B. Mircale, Acta Mater., 61: 1545 (2013). Crossref
  17. O. N. Senkov, S. V. Senkova, D. B. Mircale, and C. Woodward, Mater. Sci. Eng. A, 565: 51 (2013). Crossref
  18. E. Fazakas, V. Zadorozhnyy, L. K. Varga, A. Inoue, D. V. Louzguine-Luzgin, F. Tian, and L. Vitos, J. Refract. Met. H, 47: 131 (2014). Crossref
  19. G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J.-P. Couzinié, L. Perrière, T. Chauveau, and I. Guillot, Mater. Sci. Eng. A, 654: 30 (2016). Crossref
  20. A. Takeuchi and A. Inoue, Materials Transactions, 41: 1372 (2000). Crossref
  21. A. Takeuchi and A. Inoue, Materials Transactions, 46: 2817 (2005). Crossref
  22. F. R. Boer, R. Boom, W. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys (North-Holland: Amsterdam: 1988).
  23. WebElements Periodic Table, http://www.webelements.com/.
  24. M. F. del Grosso, G. Bozzolo, and H. O. Mosca, Physica B, 407: 3285 (2012). Crossref
  25. M. F. del Grosso, G. Bozzolo, and H. O. Mosca, J. Alloys Compd., 534: 25 (2012). Crossref