Thermal Stability of Structure and Mechanical Properties of a Nano-Quasi-Crystalline Al$_{94}$Fe$_{3}$Cr$_{3}$ Alloy

O. I. Yurkova$^{1}$, O. I. Kravchenko$^{1}$, O. V. Byakova$^{2}$, A. O. Vlasov$^{2}$

$^{1}$National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine
$^{2}$I.M. Frantsevich Institute for Problems of Materials Sciences, NAS of Ukraine, 3 Academician Krzhizhanovskoho Str., UA-03680 Kyiv-142, Ukraine

Received: 27.05.2016. Download: PDF

Nano-quasi-crystalline Al—Fe—Cr-based alloys composed of nanosize icosahedral quasi-crystalline particles embedded in the $\alpha$-Al matrix exhibit a high strength at elevated temperatures compared to commercial Al alloys. In this point, basic knowledge concerning structural stability is important for application of Al—Fe—Cr-based alloys in engineering practice. Investigation of thermal evolution of rapid-quenched melt-spun Al-based alloy with nominal composition of Al$_{94}$Fe$_{3}$Cr$_{3}$ is the subject matter of the present study. X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) are used for microstructural characterisation of the above-mentioned alloy heat-treated at different temperatures during 30 min. In addition, microindentation technique is applied to reveal a correspondence of microstructure with strength and ductility of Al$_{94}$Fe$_{3}$Cr$_{3}$ alloy in as-spun state and after heat treatment. A number of mechanical characteristics including Young’s modulus, $E$, Vickers microhardness, $HV$, yield stress, $\sigma_{0.2}$, and plasticity characteristic, $\delta_{H}$, all determined by state-of-the-art testing method procedures, are measured to specify strength and ductility of the rapid-quenched melt-spun Al$_{94}$Fe$_{3}$Cr$_{3}$. The results showed that quasi-crystalline particles survive in the microstructure of Al$_{94}$Fe$_{3}$Cr$_{3}$ alloy heat-treated up to the temperature of 400°C. However, gradual dissolution of quasi-crystalline particles and simultaneous formation of metastable crystalline Al$_{6}$Fe particles occur at the temperature above 400°C. Heat treatment of the rapid-quenched melt-spun Al$_{94}$Fe$_{3}$Cr$_{3}$ alloy at the temperature of 550°C and higher results in transition of metastable Al$_{6}$Fe phase into stable crystalline $\theta$-phases, i.e. Al$_{13}$Cr$_{2}$ and Al$_{13}$Fe$_{4}$. Combination of high strength and quite-enough ductility is found to be true for the as-spun Al$_{94}$Fe$_{3}$Cr$_{3}$ alloy. Mechanical characteristics do not change so much when Al$_{94}$Fe$_{3}$Cr$_{3}$ alloy is heated up to the 400°C, since quasi-crystalline particles remain in the microstructure. Disappearance of quasi-crystalline particles after heat treatment of Al$_{94}$Fe$_{3}$Cr$_{3}$ alloy at the temperature higher than 400°C causes strength properties to be decreased considerably although plasticity characteristic increases up to the critical value $\delta_{H} \cong 0.9$ considered as criterion for ductile behaviour of metals and alloys in conventional tests by tensile and bending.

Key words: Al—Fe—Cr-based alloy, intermetallic compounds, quasi-crystals, melt spinning, thermal stability, mechanical properties.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i11/1463.html

DOI: https://doi.org/10.15407/mfint.38.11.1463

PACS: 61.44.Br, 62.20.F-, 62.20.Qp, 64.70.kd, 81.40.Ef, 81.40.Jj, 81.40.Np

Citation: O. I. Yurkova, O. I. Kravchenko, O. V. Byakova, and A. O. Vlasov, Thermal Stability of Structure and Mechanical Properties of a Nano-Quasi-Crystalline Al$_{94}$Fe$_{3}$Cr$_{3}$ Alloy, Metallofiz. Noveishie Tekhnol., 38, No. 11: 1463—1477 (2016) (in Russian)


REFERENCES
  1. M. Galano, F. Audebert, I. C. Stone, and B. Cantor, Acta Mater., 57: 5107 (2009). Crossref
  2. N. W. Khun, R. T. Li, K. Loke, and K. A. Khor, Tribology Transactions, 58, No. 4: 616 (2015). Crossref
  3. R. T. Li, Z. L. Dong, and V. K. Murugan, Materials Characterization, 110: 264 (2015). Crossref
  4. S. Kenzari, D. Bonina, J.-M. Dubois, V. Fournée, J. Mater. Processing Technol., No. 12: 3108 (2014). Crossref
  5. F. Audebert, F. Prima, M. Galano, M. Tomut, P. J. Warren, I. C. Stone, and B. Cantor, Mater. Trans., 43, No. 8: 2017 (2002). Crossref
  6. Yu. V. Milman, A. I. Sirko, M. O. Iefimov, O. D. Neikov, A. O. Sharovsky, and N. P. Zacharova, High Temperature Materials and Processes, 25, Nos. 1–2: 19 (2006). Crossref
  7. M. Galano, F. Audebert, A. G. Escorial, I. C. Stone, and B. Cantor, Acta Mater., 57: 5120 (2009). Crossref
  8. A. Inoue and H. Kimura, Mater. Sci. Eng. A, 286, No. 1: 1 (2000). Crossref
  9. A. Inoue, Nanostructured Mater., 6: 53 (1995). Crossref
  10. A. Inoue, Prog. Mater. Sci., 43: 365 (1998). Crossref
  11. A. Ziani, A. Pianelli, A. Redjamia et al., J. Mater. Sci., 30: 2921 (1995). Crossref
  12. C. Zhang, Y. Wu, Y. Cai et al., Mater. Sci. Eng. A, 323: 226 (2002). Crossref
  13. M. Galano, F. Audebert, A. G. Escorial, I. C. Stone, and B. Cantor, J. Alloys Compd., 495: 372 (2010). Crossref
  14. J. W. Cahn, D. Shechtman, and D. Gratias, Mater. Res. Society, 1: 13(1986). Crossref
  15. Yu. V. Milman, B. A. Galanov, and S. I. Chugunova, Acta Metall. Mater., 41, No. 9: 2523 (1993). Crossref
  16. B. A. Galanov, Yu. V. Milman, S. I. Chugunova, and I. V. Goncharova, Sverkhtvyordye Materialy, No. 3: 25 (1999) (in Russian).
  17. S. R. Ignatovich and I. M. Zakiev, Zavodskaya Laboratoriya, 77, No. 1: 61 (2011) (in Russian).
  18. S. A. Firstov, V. F. Gorban, and E. P. Pechkosky, Materialovedenie, No. 8: 15 (2008) (in Russian).
  19. O. V. Byakova, O. I. Yurkova, and A. O. Vlasov, Metallofiz. Noveishie Tekhnol., 37, No. 7: 933 (2015) (in Russian). Crossref
  20. A. V. Byakova, Yu. V. Milman, A. A. Vlasov, A. O. Dudnik, and A. I. Yurkova, Sposib Vyznachennya Koeffitsienta Puassona [Method of Determining of Poisson's Ratio]: Patent No. 93248 Ukraine (Bulletin No. 2) (Publ. January 25, 2011) (in Ukrainian).
  21. M. M. Borodkina and E. N. Spektor, Rentgenograficheskiy Analiz Tekstury Metallov i Splavov [X-Ray Diffraction Analysis of the Texture of Metals and Alloys] (Moscow: Metallurgiya: 1981) (in Russian).
  22. H. M. Kimura, K. Sasamori, and A. Inoue, J. Mater. Res., 15, No. 12: 2737 (2000). Crossref
  23. M. V. Karpetc, S. O. Firstov, L. D. Kulak, I. D. Gorna, N. N. Kuzmenko, and G. F. Sarghan, Fizyka i Khimiya Tverdogo Tila, 7, No. 1: 147 (2006) (in Ukrainian).
  24. H.-J. Kestenbach, C. Bolfarini, C. S. Kiminami, and W. J. Botta Fiho, J. Metastable and Nanocrystalline Materials, 20–21: 382 (2004).
  25. V. V. Cherednichenko, O. V. Byakova, O. I. Yurkova, O. I. Sirko, Metallofiz. Noveishie Tekhnol., 33, Special Issue: 331 (2011) (in Ukrainian).