Formation of Complex Diffusion Boride Layers on Metastable Austenitic Nitrogen-Containing Chromium—Manganese Steels in Conditions of Action of an External Magnetic Field

S. M. Chernega$^{1}$, I. A. Poliakov$^{1}$, M. O. Krasovskiy$^{2}$

$^{1}$National Technical University of Ukraine ‘KPI’, 37 Peremohy Ave., 03056 Kyiv, Ukraine
$^{2}$I.M. Frantsevich Institute for Problems of Materials Sciences, NAS of Ukraine, 3 Academician Krzhizhanovskoho Str., UA-03680 Kyiv-142, Ukraine

Received: 15.02.2016; final version - 13.08.2016. Download: PDF

In this article, the formation of complex diffusion boride layers on the metastable austenitic Cr—Mn—N steel by powder method is investigated. Phase and chemical compositions, thickness, microhardness, and wear resistance of boride layers obtained on the metastable austenite Cr—Mn—N steel are determined. As established, the application of an external magnetic field (EMF) leads to a redistribution of the boride-phases’ proportion in the surface layers and to the changes of the crystal-lattice periods. EMF allows reducing the time of details’ saturation by 1.5—2 times, increasing boride-layers’ microhardness to 19—19.5 GPa and increasing their wear resistance by 2.4—2.7 times compared with Cr—Mn—N steel without protective coating.

Key words: boriding, wear resistant, microhardness, diffusion, magnetic field.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i11/1479.html

DOI: https://doi.org/10.15407/mfint.38.11.1479

PACS: 62.20.Qp, 68.35.Dv, 68.35.Fx, 81.40.Pq, 81.40.Wx, 81.65.Lp, 83.60.Np

Citation: S. M. Chernega, I. A. Poliakov, and M. O. Krasovskiy, Formation of Complex Diffusion Boride Layers on Metastable Austenitic Nitrogen-Containing Chromium—Manganese Steels in Conditions of Action of an External Magnetic Field, Metallofiz. Noveishie Tekhnol., 38, No. 11: 1479—1495 (2016) (in Ukrainian)


REFERENCES
  1. S. M. Chernega, I. F. Kirchu, and A. P. Velychko, Visnyk Natsional'noho Tekhnichnoho Universytetu Ukrayiny 'KPI', 2, No. 61: 152 (2011) (in Ukrainian).
  2. L. S. Malinov and V. L. Malinov, Ekonomnolegirovannye Splavy s Martensitnymi Prevrashcheniyami i Uprochnyayushchie Tekhnologii [Savings Alloyed Alloys with Martensitic Transformations and Hardening Technologies] (Kharkiv: National Scientific Centre 'Kharkiv Institute of Physics and Technology': 2007) (in Russian).
  3. Wantang Fu, J. Mater. Sci. Technol., 16, No. 5: 546 (2000).
  4. S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama, Materials Transactions, 45, No. 7: 2245 (2004). Crossref
  5. C. Müller-Bollenhagen, M. Zimmermann, and H. J. Christ, Proc. Engineering, 2, No. 1: 1663 (2010). Crossref
  6. S. J. Pawlak, J. Achievements in Materials and Manufacturing Engineering, 22, No. 2: 91 (2007).
  7. L. S. Malinov, V. I. Konop, and K. N. Sokolov, Abstracts of the National Scientific and Technical Conference 'New Steels and Alloys in Mechanical Engineering' (Izhevsk: 1975), p. 31 (in Russian).
  8. N. G. Kukhareva, S. N. Petrovich, N. A. Galynskaya, V. F. Protasevich, and T. N. Smirnova, Nauka i Tekhnika, No. 5: 11 (2012) (in Russian).
  9. A. Mateo, A. Zapata, and G. Fargas, Improvement of Mechanical Properties on Metastable Stainless Steels by Reversion Heat Treatments. IOP Conf. Series, Materials Science and Engineering (Bristol, UK: IOP Publishing Ltd.: 2013). Crossref
  10. V. I. Pokhmurskiy, V. B. Dalisov, and V. M. Golubets, Povyshenie Dolgovechnosti Detaley Mashin s Pomoshch'yu Diffuzionnykh Pokrytiy [Increased of Durability of Machine Parts Using Diffusion Coatings] (Kiev: Naukova Dumka: 1980) (in Russian).
  11. M. L. Bernshtein and V. N. Pustovoy, Termicheskaya Obrabotka Stal'nykh Izdeliy v Magnitnom Pole [Heat Treatment of Steel Parts in the Magnetic Field] (Moscow: Mashinostroenie: 1987) (in Russian).
  12. Spravochnik po Metallograficheskomu Travleniyu [Manual for Metallographic Etching] (Eds. I. N. Fridlyander, F. I. Kvasov, and G. B. Stroganov) (Moscow: Metallurgiya: 1979) (in Russian).