Energy Parameters of Formation of Cracks at Multiple-Pass Welding of Alloys of Ni—Cr—Fe Alloying Systems

K. A. Yushchenko, A. V. Zviagintsevа, G. B. Belyaev, M. O. Chervyakov, I. R. Volosatov, M. Yu. Kakhovskyi, Yu. V. Oliynyk

E.O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazimir Malevich Str., UA-03680 Kyiv, Ukraine

Received: 07.10.2015; final version - 20.10.2016. Download: PDF

The article considers the tendency to hot cracking in the multiple-pass nickel-based welds from the position of change of the cohesion energy of grain boundaries. It is based on the theory of the energy balance of the grain boundary and surface energies. Anisotropy and change of energy properties on grain boundaries in crack formation area are estimated depending on the crystallographic orientation by using EBSD analysis, thermal etching, and light interferometry. The concentration of S and O on the surface of the cracks in the degradation ductility dip area and their influence on the calculated cohesive energy are determined by Auger electron spectroscopy. The effect of grain-boundary segregation (adsorption) of sulphur and oxygen atoms on cohesive energy of the grain boundary is investigated.

Key words: grain boundary, ductility dip cracks, segregation energy, cohesive energy, adsorption, crystallographic orientation, Auger electron spectrometry (AES).

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i11/1513.html

DOI: https://doi.org/10.15407/mfint.38.11.1513

PACS: 61.50.Lt, 61.72.Mm, 61.72.S-, 62.20.mt, 68.35.Dv, 68.35.Gy, 81.20.Vj

Citation: K. A. Yushchenko, A. V. Zviagintsevа, G. B. Belyaev, M. O. Chervyakov, I. R. Volosatov, M. Yu. Kakhovskyi, and Yu. V. Oliynyk, Energy Parameters of Formation of Cracks at Multiple-Pass Welding of Alloys of Ni—Cr—Fe Alloying Systems, Metallofiz. Noveishie Tekhnol., 38, No. 11: 1513—1526 (2016) (in Russian)


REFERENCES
  1. Destructive Tests on Welds in Metallic Materials. Hot Cracking Tests for Weldments. Arc Welding Processes. Part 1: General, ISO 17641-1:2004.
  2. T. Boellinghaus, Cracking Phenomena in Welds IV (Springer: 2016), p. 512. Crossref
  3. S. Mahalingam, P. E. J. Flewitt, and J. F. Knott, Mater. Sci. Eng. A, 564: 342 (2013). Crossref
  4. T. Watanabe, Res. Mechanica, 11: 47 (1984).
  5. B. S. Bokshtein and A. B. Yaroslavtsev, Diffuziya Atomov i Ionov v Tverdykh Telakh [Diffusion of Atoms and Ions in Solids] (Moscow: MISiS: 2005), p. 382 (in Russian).
  6. E. A. Holm, D. L. Olmsted, and S. M. Foiles, Scr. Mater., 63: 905 (2010). Crossref
  7. D. H. Lassila and H. K. Birnbaum, Acta Metall. Mater., 35: 1815 (1987). Crossref
  8. K. A. Yushchenko, V. S. Savchenko, and N. O. Chervyakov, Avtomaticheskaya Svarka, 5: 10 (2010) (in Russian).
  9. K. Saida and K. Nishimoto, International Symposium on the Ageing Management & Maintenance of Nuclear Power Plants (ISaG2010), 03: 207 (2011).
  10. F. Christien and R. Le Gall, Surface Science, 602: 2463 (2008). Crossref
  11. K. A. Yushchenko, V. S. Savchenko, A. V. Zvyagintseva, N. O. Chervyakov, and V. Yu. Zavidonov, Nadiynist' i Dovgovichnist' Mashyn i Sporud, 36: 36 (2012) (in Ukrainian).
  12. B. Chalmers, R. King, and R. Shuttleworth, Proc. Roy. Soc. A, 193: 465 (1948). Crossref
  13. G. B. Beliaev, I. R. Volosatov, and M. Yu. Kakhovskyi, Ukrainian Journal of Mechanical Engineering and Material Science, 1, No. 1: 113 (2015).
  14. H. G. Van Bueren, Imperfections in Crystals (Amsterdam: North-Holland Publishing Company: 1960).
  15. J. R. Rice and J.-S. Wang, Mater. Sci. Eng. A, 107: 23 (1989). Crossref
  16. A. Ghani, Residual Stresses and Heat Treatments for Metallic Welded Components (Dublin City University School of Mechanical and Manufacturing Engineering: 1994), p. 265.