Features of Volume Effects under a Heating of Compacted Powder of Zirconium Hydride

O. M. Ivasishin, O. P. Karasevska, D. G. Savvakin, M. M. Humenyak, Ya. I. Melnyk, O. O. Stasiuk

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 11.10.2016. Download: PDF

The volume changes and microstructure evolution of $\varepsilon$-zirconium hydride powder compacts upon vacuum heating are studied. As determined, the elastic energy accumulated in compacted powder ensemble relaxes upon heating and hydrogen desorption leading to increase in compact volume and appearance of voids and cracks between particles. The energy relaxation occurs due to volume changes upon phase transformations on hydrogen evacuation, especially, upon $\varepsilon \rightarrow \delta$-phase transformation. This phenomenon results in formation of additional stresses in compacted powder, which induces relaxation of stresses preliminary accumulated under compaction. The ways for minimization of compact swelling upon heating are proposed; solid sintered zirconium samples without cracks are obtained.

Key words: powders, zirconium hydride, hydrogen, phase transformations, volume changes.

URL: http://mfint.imp.kiev.ua/en/abstract/v38/i11/1527.html

DOI: https://doi.org/10.15407/mfint.38.11.1527

PACS: 61.43.Gt, 61.72.Ff, 64.70.kd, 66.30.je, 81.05.Rm, 81.20.Ev, 81.40.Vw, 81.70.Pg

Citation: O. M. Ivasishin, O. P. Karasevska, D. G. Savvakin, M. M. Humenyak, Ya. I. Melnyk, and O. O. Stasiuk, Features of Volume Effects under a Heating of Compacted Powder of Zirconium Hydride, Metallofiz. Noveishie Tekhnol., 38, No. 11: 1527—1540 (2016) (in Ukrainian)


REFERENCES
  1. S. Yu. Zavodchikov, L. B. Zuev, and V. A. Kotrekhov, Metallovedcheskie Voprosy Proizvodstva Izdeliy iz Splavov Tsirkoniya [Metallurgical Problems in the Production of Products Based on Zr Alloys] (Novosibirsk: Nauka: 2012) (in Russian).
  2. M. Niinomi, Materials Transactions, 49, No. 10: 2170 (2008). Crossref
  3. A. N. Timoshevskii, S. O. Yablonovskii, and O. M. Ivasishin, Functional Materials, 19, No. 2: 266 (2012).
  4. O. M. Ivasishin, D. G. Savvakin, and M. M. Gumenyak, Metallofiz. Noveishie Tekhnol., 33, No. 7: 899 (2011) (in Russian).
  5. O. M. Ivasishin, D. G. Savvakin, K. A. Bondareva, V. S. Mokson, and V. A. Duz, Nauka ta Innovatsii, No. 2: 45 (2005) (in Russian).
  6. D. G. Savvakin and M. M. Humenyak, Metallofiz. Noveishie Tekhnol., 35, No. 3: 349 (2013) (in Russian).
  7. O. M. Ivasishin, V. T. Cherepin, V. N. Kolesnik, and M. M. Humenyak, Pribory i Tekhnika Eksperimenta, No. 3: 147 (2010) (in Russian).
  8. S. Yamanaka, K. Yoshioka, M. Uno, M. Katsura, H. Anada, T. Matsuda, and S. Kobayashi, J. Alloys Compd., 293–295: 23 (1999). Crossref
  9. D. Setoyama, J. Matsunaga, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd., 381: 215 (2004). Crossref
  10. B. A. Kolachev, A. A. Il'in, B. A. Lavrenko, and Yu. V. Levinskiy, Gidridnye Sistemy: Spravochnik [Hydride Systems: Handbook] (Moscow: Metallurgiya: 1992) (in Russian).
  11. E. Zuzek, J. P. Abriata, A. San-Martin, and F. D. Manchester, Bulletin of Alloy Phase Diagrams, 11, No. 4: 385 (1990). Crossref
  12. R. M. Daum, Y. S. Chu, and A. T. Motta, J. Nuclear Materials, 392, No. 3: 453 (2009). Crossref