Simulation of Collision Stage of Evolution of Bipartite Bimetal Clusters under Impact of Low-Energy Argon Dimers

D. V. Shyrokorad, G. V. Kornich

Zaporizhzhya National Technical University, 64 Zhukovskogo Str., 69063 Zaporizhzhya, Ukraine

Received: 14.07.2016. Download: PDF

The molecular dynamics simulation of the bombardment of bimetal Cu–Au and Ni–Al clusters consisting of 390 atoms by Ar and Ar$_{2}$ particles with initial energies from 1 eV to 1.4 keV is performed. To form the initial bipartite clusters, two monocomponent clusters of relevant elements consisting of 195 atoms are used. 2000 computer experiments during 5 ps of simulation time with different initial coordinates of argon particles are carried out for each value of the initial energy. The simulation is performed within the framework of the classical molecular dynamics using Ackland potential to describe the interaction between the metal atoms, ZBL potential—for the metal–argon-type interaction, and HFD-B3 potential—for the argon–argon-type interaction. The change of the potential energy and the temperature of the bimetal clusters are investigated. In the case of bombardment with argon dimers, in comparison with bombardment by single argon atoms with low energies, the qualitative difference in form of the dependences of potential energy and temperature of the bimetal clusters on the energy of the incident particle is shown. The sputtering yields and their compositions as well as the number of displacements of atoms across the interface between monocomponent parts of the cluster initiated by bombarding particle collision processes are calculated. The significant increase in sputtering yields and in the number of sputtered polyatomic structures with the increase of the incident-ions’ size is shown.

Key words: molecular dynamics, Ackland potential, heat of mixing, atomic clusters, ion bombardment.



PACS: 34.20.-b, 36.40.Mr, 36.40.Qv, 61.46.Bc, 61.80.Az, 61.82.Bg, 68.49.Sf

Citation: D. V. Shyrokorad and G. V. Kornich, Simulation of Collision Stage of Evolution of Bipartite Bimetal Clusters under Impact of Low-Energy Argon Dimers, Metallofiz. Noveishie Tekhnol., 39, No. 2: 163—175 (2017) (in Russian)

  1. L. Zhang and E. Wang, Nano Today, 9, No. 1: 132 (2014). Crossref
  2. T. Tsukuda and H. Hakkinen, Protected Metal Clusters: From Fundamentals to Applications (Amsterdam: Elsevier: 2015).
  3. Metal Clusters at Surfaces. Structure, Quantum Properties, Physical Chemistry (Ed. K.-H. Meiwes-Broer) (Berlin–Heidelberg: Springer-Verlag: 2000).
  4. S. Guo and E. Wang, Nano Today, 6, No. 3: 240 (2011). Crossref
  5. A. Mathew and T. Pradeep, Part. Part. Syst. Charact., 31, No. 10: 1017 (2014). Crossref
  6. Physics and Chemistry of Metal Cluster Compounds (Ed. L. J. De Jongh) (Dordrecht: Springer: 1994).
  7. V. Biju, Y. Makita, A. Sonoda, H. Yokoyama, Y. Baba, and M. Ishikawa, J. Phys. Chem. B, 109, No. 29: 13899 (2005). Crossref
  8. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, Sol. Energy Mater. Sol. Cells, 61, No. 1: 97 (2000). Crossref
  9. Z. A. Qiao, P. Zhang, S. H. Chai, M. Chi, G. M. Veith, N. C. Gallego, M. Kidder, and S. Dai, J. Am. Chem. Soc., 136, No. 32: 11260 (2014). Crossref
  10. S. Malola, M. J. Hartmann, and H. Häkkinen, J. Phys. Chem. Lett., 6, No. 3: 515 (2015). Crossref
  11. M. D. Deshpande, R. Pandey, M. A. Blanco, and A. Khalkar, J. Nanoparticle Res., 12, No. 4: 1129 (2010). Crossref
  12. A. N. Mansour, A. Dmitrienko, A. V. Soldatov, and T. Ni, Phys. Rev. B, 55, No. 23: 15531 (1997). Crossref
  13. R. Ferrando, J. Jellinek, and R. L. Johnston, Chem. Rev., 108, No. 3: 845 (2008). Crossref
  14. S. K. Mudedla, E. R. Azhagiya Singam, K. Balamurugan, and V. Subramanian, Phys. Chem. Chem. Phys., 17, No. 45: 30307 (2015). Crossref
  15. H. Akbarzadeh, M. Abbaspour, S. Salemi, and M. Abroodi, Phys. Chem. Chem. Phys., 17, No. 19: 12747 (2015). Crossref
  16. R. Kissel and H. M. Urbassek, Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 180, Nos. 1–4: 293 (2001). Crossref
  17. T. T. Järvi, J. A. Pakarinen, A. Kuronen, and K. Nordlund, Europhys. Lett., 82, No. 2: 26002 (2008). Crossref
  18. L. Sandoval and H. M. Urbassek, Nanoscale Res. Lett., 10, No. 1: 314 (2015). Crossref
  19. D. V. Shyrokorad, G. V. Kornich, and S. G. Buga, Fiz. Tverd. Tela, 58, No. 2: 377 (2016) (in Russian).
  20. D. V. Shyrokorad and G. V. Kornich, Fiz. Tverd. Tela, 56, No. 12: 2475 (2014) (in Russian).
  21. G. E. Norman and V. V. Stegaylov, Visnyk Kharkivs'kogo Natsional'nogo Universytetu, 870, No. 17 (40): 11 (2009) (in Russian).
  22. G. J. Ackland and V. Vitek, Phys. Rev. B, 41, No. 15: 10324 (1990). Crossref
  23. M. Yan, M. Šob, D. Luzzi, V. Vitek, G. J. Ackland, M. Methfessel, and C. Rodriguez, Phys. Rev. B, 47, No. 10: 5571 (1993). Crossref
  24. W. Eckstein, Computer Simulation of Ion–Solid Interactions (Berlin–Heidelberg: Springer: 2011).
  25. R. A. Aziz and M. J. Slaman, J. Chem. Phys., 92, No. 2: 1030 (1990). Crossref
  26. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 268, Nos. 11–12: 1818 (2010). Crossref
  27. G. V. Kornich, G. Betz, V. G. Kornich, V. I. Shulga, and O. A. Yermolenko, Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 269, No. 14: 1600 (2011). Crossref
  28. Sputtering by Particle Bombardment (Eds. R. Behrisch and W. Eckstein) (Berlin–Heidelberg: Springer: 2007).
  29. G. V. Kornich and G. Betz, Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 143, No. 4: 455 (1998). Crossref
  30. P. Sigmund, Phys. Rev., 184, No. 2: 383 (1969). Crossref