Distribution of Atoms on Crystallographic Positions in Heusler Alloys $M$MnSb ($M$ = Co, Ni, Cu) and Their Electronic Structure

V. N. Uvarov, N. V. Uvarov

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 02.02.2017. Download: PDF

By means of band calculations within the FLAPW (full-potential linearized augmented-plane-waves) model, the role of mutual atomic substitutions in the formation of energy, charge, and spin characteristics of $M$MnSb alloys ($M$ = Co, Ni, Cu) is clarified. As found, their ground state (with the largest cohesive energy) is realized in the case of the arrangement of $M$ atoms at the crystallographic positions with tetrahedral atomic environment, and their substitution by the manganese or antimony atoms leads to the appearance of metastable phases with high energy-excited state. The exchange of atoms between the positions, which forms the NaCl-type sublattice, does not lead to changes in the energy characteristics and electronic structure of alloys. The nickel- and cobalt-containing alloys in the ground state are semimetals, while the alloys with copper and alloys in a metastable state are metals. For all the alloys, the largest magnetic moment is localized on the manganese atoms.

Key words: band structure calculations, Heusler alloys, electronic structure, magnetic moments, polarized electron states, spintronics.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i03/0309.html

DOI: https://doi.org/10.15407/mfint.39.03.0309

PACS: 61.50.Lt, 71.15.Ap, 71.15.Mb, 71.30.+h, 75.10.Lp, 75.25.-j, 85.75.-d

Citation: V. N. Uvarov and N. V. Uvarov, Distribution of Atoms on Crystallographic Positions in Heusler Alloys $M$MnSb ($M$ = Co, Ni, Cu) and Their Electronic Structure, Metallofiz. Noveishie Tekhnol., 39, No. 3: 309—321 (2017) (in Russian)

  1. T. Graf, C. Felser, and S. S. P. Parkin, Progress in Solid State Chemistry, 39, Iss. 1: 1 (2011). Crossref
  2. C. Felser, G. H. Fecher, and B. Balke, Angew. Chem. Int. Ed., 46, Iss. 5: 668 (2007). Crossref
  3. V. N. Uvarov, N. V. Uvarov, and S. A. Bespalov, Metallofiz. Noveishie Tekhnol., 38, No. 3: 305 (2016) (in Russian). Crossref
  4. S. Ishida, T. Masaki, S. Fujii, and S. Asano, Physica B, 239, Iss. 1–2: 163 (1997). Crossref
  5. J. Tobola, L. Jodin, P. Pecheur, and G. Venturini, J. Alloys Compd., 383, Iss. 1–2: 328 (2004). Crossref
  6. P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Phys. Rev. B, 62: 12754 (2000). Crossref
  7. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, J. Alloys Compd., 394, Iss. 1–2: 122 (2005). Crossref
  8. D. Orgassa, H. Fujiwara, T. C. Schulthess, and W. H. Butler, Phys. Rev. B, 60: 13237 (1999). Crossref
  9. R. B. Helmholdt, R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, J. Magn. Magn. Mat., 43, Iss. 3: 249 (1984). Crossref
  10. M. J. Otto, R. A. M. van Woerden, P. J. van der Valk, J. Wijngaard, C. F. van Bruggen, C. Haas, and K. H. J. Buschow, J. Phys.: Condens. Matter, 1, No. 13: 2341 (1989). Crossref
  11. A. Szytula, B. Penc, L. Gondek, Acta Physica Polonica A, 111, No. 4: 475 (2007). Crossref
  12. K. H. J. Buschow, P. G. van Engen, and R. Jongebreur, J. Magn. Magn. Mat., 38: Iss. 1: 1 (1983). Crossref
  13. D. J. Singh and L. Nordstrom, Plane Waves, Pseudopotentials and LAPW Method (Boston: Kluwer Academic: 1994). Crossref
  14. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  15. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Wien: Techn. Universitat Wien: 2001).
  16. http://www.wien2k.at/reg_user/faq/.
  17. B. R. K. Nanda and I. Dasgupta, J. Phys.: Condens. Matter, 15, No. 43: 7307 (2003). Crossref
  18. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50: 2024 (1983). Crossref
  19. D. Jung, H.-J. Koo, and M.-H. Whangbo, J. Mol. Structure (Theochem), 527, Iss. 1–3: 113 (2000). Crossref
  20. I. Galanakis and P. H. Dederichs, Lect. Notes Phys., 676 (2005).
  21. T. Jeong, R. Weht, and W. E. Pickett, arXiv:cond-mat/0505624v1 (2005).
  22. J. Kübler, A. R. William, and C. B. Sommers, Phys. Rev. B, 28: 1745 (1983). Crossref
  23. P. G. van Engen, K. H. J. Buschow, R. Jongebreur, and M. Erman, Appl. Phys. Lett., 42, Iss. 2: 202 (1983). Crossref
  24. H. Forster, G. B. Johnston, and D. A. Wheeler, J. Phys. Chem. Solids, 29, Iss. 5: 855 (1968). Crossref