Influence of Substitution of Cobalt for the Vanadium on Interaction Conditions in Sm$_{2}$(Co,V)$_{17}$–H$_{2}$ System

I. I. Bulyk, M. V. Pylat

Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5, Naukova Str., 79060 Lviv, Ukraine

Received: 28.07.2017. Download: PDF

Phase transformations in the Sm$_{2}$Co$_{16.81}$V$_{0.19}$, Sm$_{2}$Co$_{16.43}$V$_{0.57}$ and Sm$_{1.66}$Co$_{16.77}$V$_{0.57}$ alloys are investigated by means of the differential thermal and X-ray phase analyses during conventional and solid hydrogenation, disproportionation (HD) treatment under hydrogen pressure of 1.5–4.2 МPа and temperature up to 950°C. The slowdown of hydrogen-induced phase transformations due to partial substitution of cobalt for the vanadium is determined. The ferromagnetic phase with the Th$_{2}$Zn$_{17}$-type structure starts to disproportionate during conventional HD and disproportionates completely on SmH$_{2\pm x}$ and two polymorphic cobalt structures (ht-Co and rt-Co) during solid HD with 1 h treatment under hydrogen pressure of 3.0 MPa at 700°C.

Key words: magnetic materials, Sm$_{2}$Co$_{17}$-based alloys, vanadium, alloying, hydrogenation, disproportionation, phase transformations.



PACS: 64.70.kd, 75.50.Cc, 75.50.Tt, 75.50.Vv, 75.50.Ww, 81.07.Bc, 81.70.Pg

Citation: I. I. Bulyk and M. V. Pylat, Influence of Substitution of Cobalt for the Vanadium on Interaction Conditions in Sm$_{2}$(Co,V)$_{17}$–H$_{2}$ System, Metallofiz. Noveishie Tekhnol., 39, No. 3: 323—335 (2017) (in Ukrainian)

  1. Nanoscale Magnetic Materials and Applications (Eds. J. Ping Liu, E. Fullerton, O. Gutfleisch, and D. J. Sellmyer) (New York: Springer Science+Business Media: 2009).
  2. N. Poudyal and J. P. Liu, J. Phys. D: Appl. Phys., 46: 043001 (2013). Crossref
  3. O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. Ping Liu, Adv. Mater., 23: 821 (2011). Crossref
  4. N. Cannesan and I. R. Harris, Bonded Magnets, NATO Science Series: II. Mathematics, Physics and Chemistry (Ed. G. C. Hadjipanayis) (2002), vol. 118, p. 13.
  5. R. S. Sheridan, I. R. Harris, and A. Walton, J. Magn. Magn. Mater., 401: 455 (2016). Crossref
  6. I. I. Bulyk and V. V. Panasyuk, Physicochemical Mechanics of Materials, 48, No. 1: 9 (2012) (in Ukrainian).
  7. I. I. Bulyk, V. N. Varyukhin, V. Yu. Tarenkov, V. V. Burkhovetskiy, and S. L. Sidorov, Fizika i Tekhnika Vysokikh Davleniy, 23, No. 4: 67 (2013) (in Russian).
  8. I. I. Bulyk and V. V. Burkhovets'kyy, Poroshkovaya Metallurgiya, 54, Nos. 9/10: 134 (2015) (in Ukrainian).
  9. K. Suresh, R. Gopalan, G. Bhikshamaiah, A. K. Singh, D. V. Sridhara Rao, K. Muraleedharan, and V. Chandrasekaran, J. Alloy Compd., 463: 73 (2008). Crossref
  10. K. Suresh, R. Gopalan, D. V. Sridhara Rao, A. K. Singh, G. Bhikshamaiah, K. Muraleedharan, and V. Chandrasekaran, Intermetallics, 18: 2244 (2010). Crossref
  11. H. Zaigham and F. A. Khalid, Materials Characterization, 61: 1274 (2010). Crossref
  12. R. Gopalan, T. Ohkubo, and K. Hono, Scr. Mater., 53: 367 (2005). Crossref
  13. K. Suresh, R. Gopalan, A. K. Singh, G. Bhikshamaiah, V. Chandrasekaran, and K. Hono, J. Alloy Compd., 436: 358 (2007). Crossref
  14. X. B. Liu and Z. Altounian, Comput. Mater. Sci., 50: 841 (2011). Crossref
  15. Y. Zhang, A. Gabay, Y. Wang, and G. C. Hadjipanayis, J. Magn. Magn. Mater., 272: e1899 (2004). Crossref
  16. J. Zhou, A. Kashyap, Y. Liu, R. Skomski, and D. J. Sellmyer, IEEE Trans. Magn., 40, No. 4: 2940 (2004). Crossref
  17. R. F. Sabirianov, A. Kashyap, R. Skomski, S. S. Jaswal, and D. J. Sellmyer, Appl. Phys. Lett., 85, No. 12: 2286 (2008). Crossref
  18. A. A. Kündig, R. Gopalan, T. Ohkubo, and K. Hono, Scr. Mater., 54: 2047 (2006). Crossref
  19. Z. Yao, Q. Xu, and C. Jiang, J. Magn. Magn. Mater., 320: 1717 (2008). Crossref
  20. T. Saito and D. Nishio-Hamane, J. Alloys Compd., 585: 423 (2014). Crossref
  21. J. Zhang, Y. K. Takahashi, R. Gopalan, and K. Hono, J. Magn. Magn. Mater., 310: 1 (2007). Crossref
  22. M. V. Satyanarayana, H. Fujii, and W. E. Wallace, J. Appl. Phys., 53: 2374 (1982). Crossref
  23. R. S. K. Valiveti, A. Ingmire, C. Baudot, and J. E. Shield, J. Alloys Compd., 493: 95 (2010). Crossref
  24. I. I. Bulyk, R. V. Denys, V. V. Panasyuk, Yu. H. Putilov, and A. M. Trostianchyn, Fiz.-Khim. Mekhanika Materialiv, 37, No. 4: 15 (2001) (in Ukrainian).
  25. I. I. Bulyk, Yu. B. Basaraba, A. M. Trostianchyn, and V. M. Davydov, Fiz.-Khim. Mekhanika Materialiv, 41, No. 3: 101 (2005) (in Ukrainian).
  26. I. I. Bulyk and P. Ya. Lyutyy, Metallofiz. Noveishie Tekhnol., 35, No. 9: 1283 (2013) (in Ukrainian).
  29. O. Gutfleisch and I. R. Harris, J. Phys. D: Appl. Phys., 29: 2255 (1996). Crossref
  30. A. Handstein, M. Kubis, O. Gutfleisch, B. Gebel, and K.-H. Muller, J. Magn. Magn. Mater., 192: 73 (1999). Crossref
  31. I. I. Bulyk, A. M. Trostianchyn, and P. Ya. Lyutyy, Fiz.-Khim. Mekhanika Materialiv, 48, No. 3: 53 (2012) (in Ukrainian).
  32. I. I. Bulyk and M. V. Pylat, Metallofiz. Noveishie Tekhnol., 38, No. 5: 697 (2016) (in Ukrainian). Crossref
  33. I. I. Bulyk, P. Ya. Lyutyy, and A. M. Trostianchyn, Metallofiz. Noveishie Tekhnol., 33, No. 6: 807 (2011) (in Ukrainian).
  34. I. I. Bulyk, A. M. Trostianchyn, P. Ya. Lyutyy, and V. V. Burkhovetskyi, Poroshkovaya Metallurgiya, 52, Nos. 9/10: 56 (2013) (in Ukrainian).