Tracer Diffusion of Cobalt in High-Entropy Alloys Al$_{x}$FeNiCoCuCr

V. M. Nadutov, V. F. Mazanko, S. Yu. Makarenko

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 16.12.2017. Download: PDF

The Co diffusion in the as-cast high-entropy alloys Al$_{x}$FeNiCoCuCr ($x$ = 1, 1.5, 1.8) is studied by means of the tracer-diffusion method using the $^{60}$Cо isotope. As shown, the Co diffusion in the high-entropy alloys occurs by means of the vacancy mechanism and the diffusion coefficient decreases approximately in three times (from 3.21$\cdot$10$^{-16}$ to 0.98$\cdot$10$^{-16}$ m$^{2}$s$^{-1}$) with the increasing Al concentration. The decelerated Co diffusion is explained in terms of relatively large and negative enthalpy of mixing.

Key words: high-entropy alloys, $^{60}$Cо diffusion coefficient, structure, activation energy, melting temperature.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i03/0337.html

DOI: https://doi.org/10.15407/mfint.39.03.0337

PACS: 61.66.Dk, 61.72.S-, 65.40.gd, 66.30.Fq, 66.30.J-, 68.37.Hk, 81.70.Pg

Citation: V. M. Nadutov, V. F. Mazanko, and S. Yu. Makarenko, Tracer Diffusion of Cobalt in High-Entropy Alloys Al$_{x}$FeNiCoCuCr, Metallofiz. Noveishie Tekhnol., 39, No. 3: 337—348 (2017)


REFERENCES
  1. S. Ranganathan, Current Sci., 85, No. 5: 1404 (2003).
  2. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater., 6: 299 (2004). Crossref
  3. C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang, Metall. Mater. Trans. A, 36: 881 (2005). Crossref
  4. C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang, Metall. Mater. Trans. A, 36: 1263 (2005). Crossref
  5. J. M. Wu, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and H. C. Chen, WEAR, 261: 513 (2006). Crossref
  6. O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, Intermetallics, 19, Iss. 5: 698 (2011). Crossref
  7. H. P. Chou, Y. S. Chang, S. K. Chen, and J. W. Yeh, Mater. Sci. Eng., 163: 184 (2009). Crossref
  8. Y. F. Kao, S. K. Chen, T. J. Chen, P. C. Chu, J. W. Yeh, and S. J. Lin, J. Alloys Compd., 509: 1607 (2011). Crossref
  9. W. H. Liu, Y. Wu, J. Y. He, T. G. Nieh, and Z. P. Lu, Scr. Mater., 68: 526 (2013). Crossref
  10. M.-H. Tsai, C.-W. Wang, C.-W. Tsai, W.-J. Shen, J.-W. Yeh, J.-Y. Gan, and W.-W. Wu, J. Electrochem. Soc., 158: H1161 (2011). Crossref
  11. K. Y. Tsai, M. H. Tsai, and J.-W. Yeh, Acta Mater., 61: 4887 (2013). Crossref
  12. J. Dabrowa, W. Kucza, G. Cieslak, T. Kulik, M. Danilewski, and J.-W. Yeh, J. Alloys Compd., 674: 455 (2016). Crossref
  13. M. Vaidya, S. Trubel, B. S. Murty, G. Wilde, and S. V. Divinski, J. Alloys Compd., 688: 994 (2016). Crossref
  14. L. N. Larikov and V. I. Isaichev, Diffuziya v Metallakh i Splavakh: Spravochnik [Diffusion in Metals and Alloys: Reference Book] (Kiev: Naukova Dumka: 1987) (in Russian).
  15. S. Z. Bokstein, Diffuziya i Struktura Metallov [Diffusion and Structure of Metals] (Moscow: Metalluriya: 1973) (in Russian).
  16. C. C. Tung, J. W. Yeh, T. T. Shun, S. K. Chen, Y. S. Huang, and H. C. Chen, Mater. Lett., 61: 1 (2007). Crossref
  17. S. Singh, N. Wanderka, K. Kiefer, K. Siemensmeyer, and J. Banhart, Ultramicroscopy, 111, Iss. 6: 619 (2011). Crossref
  18. V. M. Nadutov, S. Yu. Makarenko, and P. Yu. Volosevich, The Physics of Metals and Metallography, 116, No. 5: 439 (2015). Crossref
  19. A. Takeuchi and A. Inoue, Mater. Trans., 46, No. 12: 2817 (2005). Crossref
  20. S. Singh, N. Wanderka, B. S. Murty, U. Glatzel, and J. Banhart, Acta Mater., 59: 182 (2011). Crossref
  21. B. S. Bokstein, Diffuziya v Metallakh [Diffusion in Metals] (Moscow: Metallurgiya: 1978) (in Russian).
  22. A. A. Smirnov, Teoriya Vakansiy v Metallakh i Splavakh i Ee Primenenie k Splavam Vychitaniya [Theory of Vacancies in Metals and Alloys and Its Application to Subtraction Alloys] (Kiev: Naukova Dumka: 1993) (in Russian).