Loading [MathJax]/jax/output/HTML-CSS/jax.js

3d–4f-Intermetallides. Exchange and Anisotropy. Many-Electron Statistics

O. I. Mitsek, V. M. Pushkar

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 13.03.2017. Download: PDF

Magnetic properties of the 3d(Fe)–4f(RE) intermetallides are calculated by introduction of both the many-electron operator spinors (MEOS) and the chemical-bonds’ fluctuations as MEOS Fourier images. Dependences of both the critical temperature Tc and the compensation temperature Tk on the rare-earth ion (REI) spin Sf(T) are obtained. They agree with data for Fe2RE and Fe3RE. Axial symmetry of Nd2Fe14B is connected with orbital moment Lr of the B5 ion with inhomogeneous (covalent) B–Fe bond. Direct Fe–Fe exchange explains the dependence Tc0Tc(Fe)x2D on the concentration xD of Fe ions. Additional term δTcS2f for Fe2RE ferromagnets is given by direct Fe–RE exchange, and for ferrimagnets, it is conditioned by indirect antiferromagnetic RE–eg–RE exchange. The magnetization (Ms) compensation temperature depends on the REI angular moment J. Analogous properties for Nd2Fe14B ferrimagnet (such as inflection of the Ms(T) function, ferromagnetic anisotropy field BA(1+AT)2, etc.) are obtained and agree with literature data.

Key words: REI–Fe intermetallides, many-electron operator spinors, theory of direct covalent ferromagnetic and indirect band-covalent antiferromagnetic exchange, uniaxial deformation, ferromagnetic anisotropy.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i04/0425.html

DOI: https://doi.org/10.15407/mfint.39.04.0425

PACS: 61.50.Ks, 71.20.Eh, 71.30.+h, 75.10.Dg, 75.30.Kz, 75.30.Mb

Citation: O. I. Mitsek and V. M. Pushkar, 3d–4f-Intermetallides. Exchange and Anisotropy. Many-Electron Statistics, Metallofiz. Noveishie Tekhnol., 39, No. 4: 425—439 (2017) (in Russian)


REFERENCES
  1. S. V. Vonsovsky, Magnetism (Moscow: Nauka: 1971) (in Russian).
  2. K. N. R. Taylor and M. I. Darby, Physics of Rare Earth Solids (London: Chapman and Hall LTD: 1972).
  3. K. P. Belov, Magnetic Transformations (Moscow: Gos. Izd. Fiz.-Mat. Lit.: 1959) (in Russian).
  4. O. I. Mitsek and V. N. Pushkar, Metallofiz. Noveishie Tekhnol., 37, No. 4: 433 (2015) (in Russian). Crossref
  5. A. V. Vershinin, V. V. Serikov, N. M. Kleinerman, N. V. Mushnikov, E. G. Gerasimov, V. G. Gaviko, and A. V. Proshkin, Fiz. Met. Metalloved., 115, No. 12: 1276 (2014) (in Russian). Crossref
  6. O. I. Mitsek and V. N. Pushkar, Metallofiz. Noveishie Tekhnol., 38, No. 7: 853 (2016) (in Russian). Crossref
  7. A. V. Andreev, A.V. Deryagin, N. V. Kudrevatykh, N. V. Mushnikov, V. A. Reimer, and S. V. Terentiev, Zh. Eksp. Teor. Fiz., 90, No. 3: 1042 (1986) (in Russian).
  8. J. Smart, Effective Field in Theories of Magnetism (Philadelphia–London: W. B. Saunders Company: 1966).
  9. V. M. Fedina and P. E. Gladyshevskiy, Ukr. Khim. Journal, 80, Nos. 1/2: 7 (2014) (in Russian).
  10. G. P. Brekharya, E. A. Kharitonova, and T. V. Gulyaeva, Uspehi Fiziki Metallov, 15, No. 1: 35 (2014) (in Russian). Crossref
  11. Y. Pan, Phys. Rev. Lett., 111, No. 20: 20206 (2013). Crossref
  12. A. V. Pushin, A. A. Popov, and V. G. Pushin, Fiz. Met. Metalloved., 113, No. 3: 299 (2012) (in Russian).
  13. G. Li, Y. Y. Wang, P. K. Liaw, Y. C. Li, and R. P. Liu, Phys. Rev. Lett., 109, No. 12: 125501 (2012). Crossref
  14. A. E. Teplich, Yu. G. Chukalkin, S. G. Bogdanov, Yu. N. Skryabin, N. V. Kudrevatih, S. V. Andreev, A. S. Volegov, A. I. Kozlov, E. Choy, and A. N. Pirogov, Fiz. Met. Metalloved., 113, No. 6: 597 (2012) (in Russian).
  15. A. V. Deryagin, Uspekhi Fiz. Nauk, 120, No. 3: 391 (1976) (in Russian).