3d–4f-Intermetallides. Exchange and Anisotropy. Many-Electron Statistics

O. I. Mitsek, V. M. Pushkar

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 13.03.2017. Download: PDF

Magnetic properties of the 3$d$(Fe)–4$f$(RE) intermetallides are calculated by introduction of both the many-electron operator spinors (MEOS) and the chemical-bonds’ fluctuations as MEOS Fourier images. Dependences of both the critical temperature $T_{\textrm{c}}$ and the compensation temperature $T_k$ on the rare-earth ion (REI) spin $S_f$($T$) are obtained. They agree with data for Fe$_2$RE and Fe$_3$RE. Axial symmetry of Nd$_2$Fe$_{14}$B is connected with orbital moment $L_r$ of the B$^5$ ion with inhomogeneous (covalent) B–Fe bond. Direct Fe–Fe exchange explains the dependence $T_{\textrm{c0}} \cong T_{\textrm{c}}$(Fe)$x^2_D$ on the concentration $x_D$ of Fe ions. Additional term ${\delta}T_{\textrm{c}} \propto S^2_f$ for Fe$_2$RE ferromagnets is given by direct Fe–RE exchange, and for ferrimagnets, it is conditioned by indirect antiferromagnetic RE–$e_{\textrm{g}}$–RE exchange. The magnetization ($M_s$) compensation temperature depends on the REI angular moment $J$. Analogous properties for Nd$_2$Fe$_{14}$B ferrimagnet (such as inflection of the $M_{s}(T)$ function, ferromagnetic anisotropy field $B_A \propto (1 + AT)^{-2}$, etc.) are obtained and agree with literature data.

Key words: REI–Fe intermetallides, many-electron operator spinors, theory of direct covalent ferromagnetic and indirect band-covalent antiferromagnetic exchange, uniaxial deformation, ferromagnetic anisotropy.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i04/0425.html

DOI: https://doi.org/10.15407/mfint.39.04.0425

PACS: 61.50.Ks, 71.20.Eh, 71.30.+h, 75.10.Dg, 75.30.Kz, 75.30.Mb

Citation: O. I. Mitsek and V. M. Pushkar, 3d–4f-Intermetallides. Exchange and Anisotropy. Many-Electron Statistics, Metallofiz. Noveishie Tekhnol., 39, No. 4: 425—439 (2017) (in Russian)


REFERENCES
  1. S. V. Vonsovsky, Magnetism (Moscow: Nauka: 1971) (in Russian).
  2. K. N. R. Taylor and M. I. Darby, Physics of Rare Earth Solids (London: Chapman and Hall LTD: 1972).
  3. K. P. Belov, Magnetic Transformations (Moscow: Gos. Izd. Fiz.-Mat. Lit.: 1959) (in Russian).
  4. O. I. Mitsek and V. N. Pushkar, Metallofiz. Noveishie Tekhnol., 37, No. 4: 433 (2015) (in Russian). Crossref
  5. A. V. Vershinin, V. V. Serikov, N. M. Kleinerman, N. V. Mushnikov, E. G. Gerasimov, V. G. Gaviko, and A. V. Proshkin, Fiz. Met. Metalloved., 115, No. 12: 1276 (2014) (in Russian). Crossref
  6. O. I. Mitsek and V. N. Pushkar, Metallofiz. Noveishie Tekhnol., 38, No. 7: 853 (2016) (in Russian). Crossref
  7. A. V. Andreev, A.V. Deryagin, N. V. Kudrevatykh, N. V. Mushnikov, V. A. Reimer, and S. V. Terentiev, Zh. Eksp. Teor. Fiz., 90, No. 3: 1042 (1986) (in Russian).
  8. J. Smart, Effective Field in Theories of Magnetism (Philadelphia–London: W. B. Saunders Company: 1966).
  9. V. M. Fedina and P. E. Gladyshevskiy, Ukr. Khim. Journal, 80, Nos. 1/2: 7 (2014) (in Russian).
  10. G. P. Brekharya, E. A. Kharitonova, and T. V. Gulyaeva, Uspehi Fiziki Metallov, 15, No. 1: 35 (2014) (in Russian). Crossref
  11. Y. Pan, Phys. Rev. Lett., 111, No. 20: 20206 (2013). Crossref
  12. A. V. Pushin, A. A. Popov, and V. G. Pushin, Fiz. Met. Metalloved., 113, No. 3: 299 (2012) (in Russian).
  13. G. Li, Y. Y. Wang, P. K. Liaw, Y. C. Li, and R. P. Liu, Phys. Rev. Lett., 109, No. 12: 125501 (2012). Crossref
  14. A. E. Teplich, Yu. G. Chukalkin, S. G. Bogdanov, Yu. N. Skryabin, N. V. Kudrevatih, S. V. Andreev, A. S. Volegov, A. I. Kozlov, E. Choy, and A. N. Pirogov, Fiz. Met. Metalloved., 113, No. 6: 597 (2012) (in Russian).
  15. A. V. Deryagin, Uspekhi Fiz. Nauk, 120, No. 3: 391 (1976) (in Russian).