Hydrogen Grain Boundary Segregation and Migration in the Alpha-Iron

V. G. Gavriljuk, S. M. Teus

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 15.03.2017. Download: PDF

Based on the difference in diffusion mechanisms of substitutional and interstitial atoms and using molecular dynamics simulation of hydrogen migration, it is shown that accelerated hydrogen flux in the polycrystalline iron observed during cathodic charging cannot originate from the enhanced hydrogen grain-boundary diffusion. A possible role of grain-boundary cracking is supposed.

Key words: hydrogen diffusion, grain boundaries, molecular dynamics simulation.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i04/0457.html

DOI: https://doi.org/10.15407/mfint.39.04.0457

PACS: 61.43.Bn, 61.72.J-, 61.72.Mm, 66.30.J-, 67.63.Cd, 67.63.Gh

Citation: V. G. Gavriljuk and S. M. Teus, Hydrogen Grain Boundary Segregation and Migration in the Alpha-Iron, Metallofiz. Noveishie Tekhnol., 39, No. 4: 457—464 (2017)


REFERENCES
  1. N. R. Quick and H. H. Johnson, Metall. Trans. A, 10: 67 (1979). Crossref
  2. T. Tsuru and R. M. Latanision, Scr. Metall., 16: 575 (1982). Crossref
  3. B. Ladna and H. K. Birnbaum, Acta Metall., 35: 2537 (1987). Crossref
  4. A. Kimura and H. K. Birnbaum, Acta Metall., 36: 757 (1988). Crossref
  5. A. M. Brass and A. Chanfreau, Acta Mater., 44: 3823 (1996). Crossref
  6. A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, and X. Feaugas, Acta Mater., 60: 6814 (2012). Crossref
  7. W. Beck, J. Bockris, J. McBreen, and L. Nanis, Proc. R. Soc. A, 290: 220 (1966). Crossref
  8. W. M. Robertson, Z. Metallk., 69: 436 (1973).
  9. V. M. Sidorenko and I. I. Sidorak, Fiz. Khim. Mekh. Mater., 1: 52 (1973) (in Russian).
  10. J. Yao and J. R. Cahoon, Acta Metall. Mater., 39: 119 (1991). Crossref
  11. M. Koyama, D. Yamasaki, T. Nagashima, C. Tasan, and K. Tsuzaki, Scr. Mater., 129: 48 (2017). Crossref
  12. T. Shober and C. Dieker, Metall. Trans. A, 14: 2440 (1983). Crossref
  13. T. Sundararajan, E. Akiyama, and K. Tsuzaki, Scr. Mater., 53: 1219 (2005). Crossref
  14. T. Sundararajan, E. Akiyama, and K. Tsuzaki, Electrochem. Solid State Lett., 8: B30–B33 (2005). Crossref
  15. M. Koyama, E. Akiyama, T. Sawaguchi, K. Ogawa, I. V. Kireeva, Y. I. Chumlyakov, and K. Tsuzaki, Corros. Sci., 75: 345 (2013). Crossref
  16. H. Hagi, Y. Hayashi, and N. Ohtani, Trans. Jpn. Inst. Metals., 20: 349 (1979). Crossref
  17. S. M. Teus, V. F. Mazanko, J.-M. Olive, and V. G. Gavriljuk, Acta Mater., 69: 105 (2014). Crossref
  18. S. M. Teus and V. G. Gavriljuk, Metallofiz. Noveishie Tekhnol., 36, No. 10: 1399 (2014). Crossref
  19. S. Ranganathan, Acta Cryst., 21: 197 (1966). Crossref
  20. M. A. Fortes, phys. status solidi (b), 54: 311 (1972). Crossref
  21. M. Nagano, Y. Hayashi, N. Ohtani, M. Isshiki, and K. Igaki, Scr. Metall., 16: 973 (1982). Crossref
  22. I. F. Dufresne, A. Seeger, P. Groh, and P. Moser, phys. status solidi (a), 36: 579 (1976). Crossref
  23. T. Suzuoka, Trans. Japan Inst. Metals., 2: 25 (1961). Crossref
  24. J. C. Fisher, J. Appl. Phys., 22: 74 (1951). Crossref
  25. R. T. P. Whipple, Philos. Mag., 45: 1225 (1954). Crossref
  26. M. Weller and J. Diehl, Scr. Metall., 10, No. 2: 101 (1976). Crossref
  27. Y. Tateyama and T. Ohno, Phys Rev. B, 82: 174105 (2003). Crossref
  28. G. S. Mogilny, S. M. Teus, V. N. Shyvanyuk, and V. G. Gavriljuk, Mater. Sci. Eng. A, 648: 260 (2015). Crossref
  29. V. G. Gavriljuk, H. Hanninen, S. Yu. Smouk, A. V. Tarasenko, and K. Ullakko, Proc. of Intern. Conf. 'Hydrogen Transport and Cracking in Metals' (April 14–17, 1994, London) (The Institute of Materials: 1995), p. 321.
  30. F. Garofalo, Y. T. Chou, and V. Ambegaokar, Acta Met., 8: 504 (1960). Crossref
  31. B. A. Bilby and J. Hewitt, Acta Met., 10: 587 (1962). Crossref
  32. H. H. Johnson, Fundamental Aspects of Stress Corrosion Cracking (Eds. R. W. Staehle, A. J. Forty, and D. Van Rooyen) (Houston, USA: NACE: 1969), p. 439.