Effect of Hydrogen-Phase Cold-Work Hardening on the Palladium-Hydride Dehydrogenation Kinetics

M. V. Goltsova

Belarusian National Technical University, 65 Nezavisimosty Ave., 220013, Minsk, Republic of Belarus

Received: 16.02.2017; final version - 01.03.2017. Download: PDF

Samples of PdH$_x$ with different degrees of hydrogen-phase cold-work hardening are fabricated by palladium hydrogenation from gaseous phase. Experimental investigations of the samples’ degassing kinetics during exposure at air are performed. As determined, the degassing rate decreases with increasing of degree of hydrogen-phase cold-work hardening. At some limit degree of hydrogen-phase cold-work hardening, palladium hydride becomes stable, and hydrogen degassing is completely suppressed.

Key words: palladium, hydrogen, hydrogen-phase cold-work hardening, kinetics of degassing.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i04/0465.html

DOI: https://doi.org/10.15407/mfint.39.04.0465

PACS: 61.72.S-, 62.20.F-, 64.70.kd, 66.30.J-, 67.63.-r, 81.40.Ef, 88.30.rd

Citation: M. V. Goltsova, Effect of Hydrogen-Phase Cold-Work Hardening on the Palladium-Hydride Dehydrogenation Kinetics, Metallofiz. Noveishie Tekhnol., 39, No. 4: 465—475 (2017) (in Russian)


REFERENCES
  1. Int. Conf. 'Vysokochistye Materialy: Poluchenie, Primenenie, Svoystva', Posvyashchennaya Pamyati Akademika V. M. Azhazhi (Sept. 17–20, 2013, Kharkiv, Ukraine).
  2. http://www.energya.by/alternativnyie-istochniki-energii-v-ukraine-podvedenie-itogov-i-prognozyi-razvitiya/
  3. http://esco.co.ua/journal/2006_6/index.htm
  4. http://energy.esco.agency/soderzhanie-zhurnala/rubriki-zhurnala/34-prognozy-i-analitika/584-kakaya-ona-e
  5. http://www.popmech.ru/technologies/316052-niderlandy-pereveli-vse-zhd-na-energiyu-vetra/?utm_source=rnews
  6. https://naked-science.ru/article/hi-tech/niderlandskie-poezda-pereveli-na?utm_source=rnews
  7. http://www.cleandex.ru/articles/2012/01/27/strany-lidery_mirovoj_vodorodnoj_jenergetiki_v_2010-2011_gg._obzor_evropejskih_proektov
  8. E. Wicke and H. Brodowski, Vodorod v Metallakh [Hydrogen in Metals] (Ed. G. Alefeld and I. Völkl) (Moscow: Mir: 1981), vol. 2, p. 91 (in Russian).
  9. V. A. Gol'tsov and N. I. Timofeev, Sposob Uprochneniya Gidridoobrazuyushchikh Metallov i Splavov: Authors' Certificate No. 510529 USSR (Publ. April 15, 1976) (in Russian).
  10. M. V. Goltsova, E. N. Lyubimenko, G. N. Tolmacheva, and G. I. Zhirov, Metallofiz. Noveishie Tekhnol., 37, No. 8: 1135 (2015) (in Russian). Crossref
  11. V. A. Gol'tsov, Vzaimodeystvie Vodoroda s Metallami (Ed. A. P. Zakharov), (Moscow: Nauka: 1987), p. 264 (in Russian).
  12. G. I. Zhirov, V. A. Gol'tsov, and G. E. Shatalova, Fizika i Tekhnika Vysokikh Davleniy, 13, No. 4: 114 (2003) (in Russian).
  13. G. I. Zhirov, E. V. Novodevichenskaya, and M. V. Gol'tsova, Proceedings of 5-th Int. Conf. 'Vodorodnaya Ekonomika i Vodorodnaya Obrabotka Materialov–2007' (May 21–25, 2007, Donetsk, Ukraine) (in Russian).
  14. G. I. Zhirov, V. A. Gol'tsov, and D. A. Glyakov, Fiz. Met. Metalloved., 97, No. 1: 113 (2004) (in Russian).
  15. M. V. Gol'tsova, Yu. A. Artemenko, and G. I. Zhirov, Alternativnaya Energetika i Ekologiya, No. 1: 70 (2014) (in Russian).
  16. M. V. Goltsova, Yu. A. Artemenko, and V. I. Zaitsev, J. Alloys Compd., 293–295: 379 (1999). Crossref
  17. M. V. Gol'tsova, Metalurgiya: Zbirnyk Naukovykh Prats DonDTU, 2, Iss. 40: 99 (2002) (in Ukrainian).