Laser Doping of Titanium with Transition Metals of the Fe Group

V. V. Gіrzhon, O. V. Smolyakov, O. F. Zdorovets

Zaporizhzhya National University, 66 Zhukovskogo Str., 69600 Zaporizhzhya, Ukraine

Received: 07.02.2017; final version - 22.03.2017. Download: PDF

The structural-phase state of surface layers of the industrial titanium alloy Grade 2 after laser alloying by the iron, cobalt, and nickel powders are studied by the x-ray and metallographic analysis. The phase composition in zone of laser alloying is basically determined by the solubility of alloying component in the $\beta$-titanium. At the alloying by iron, which has a maximum solubility, the formation of the solid solution based on the $\beta$-phase occurs. At the alloying by nickel, which has a minimum solubility, mainly intermetallic phases of Ti$_2$Ni with f.c.c. lattice and TiNi with monoclinic lattice are formed. The laser alloying by cobalt results in the formation of $\beta$-solid solution and TiCo phase with a cubic lattice. The formation of the equilibrium Ti$_2$Co phase is not observed. As shown, the use of glue on the organic base as a binder alloying coating in all cases results in the formation of titanium carbide TiC that leads to increase of the microhardness in the zone of laser alloying.

Key words: titanium alloy, laser alloying, phase composition, intermetallic compounds, titanium carbide.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i04/0507.html

DOI: https://doi.org/10.15407/mfint.39.04.0507

PACS: 62.20.Qp, 68.55.Ln, 68.55.Nq, 81.05.Ni, 81.10.Fq, 81.16.Mk, 81.65.Lp

Citation: V. V. Gіrzhon, O. V. Smolyakov, and O. F. Zdorovets, Laser Doping of Titanium with Transition Metals of the Fe Group, Metallofiz. Noveishie Tekhnol., 39, No. 4: 507—515 (2017) (in Russian)


REFERENCES
  1. Yu. I. Sementsov, N. A. Gavrilyuk, G. P. Prikhod'ko, A. V. Melezhyk, M. L. Pyatkovsky, V. V. Yanchenko, S. L. Revo, E. A. Ivanenko, and A. I. Senkevich, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials (Dordrecht, Netherlands: Kluwer Academic Publishers: 2007), p. 757. Crossref
  2. V. V. Girzhon, V. M. Kovalyova, and O. V. Smolyakov Metallofiz. Noveishie Tekhnol., 37, No. 5: 703 (2015) (in Russian). Crossref
  3. I. V. Gayvoronskiy and V. V. Girzhon, Metalloved. Termich. Obr., No. 5: 59 (2015) (in Russian).
  4. S. I. Mudry, Yu. S. Nykyruy, Yu. O. Kulyk, and Z. A. Stotsko, J. Achiev. Mater. Manuf. Eng., 61, No. 1: 7 (2013).
  5. A. P. Bekrenev and E. L. Filina, Fiz. Khim. Obr. Mater., No. 4: 116 (1991) (in Russian).
  6. C. Dong, Z. K. Hei, L. B. Wang, Q. H. Song, Y. K. Wu, and K. H. Kuo, Scr. Metallurgica, 20: 1155 (1986). Crossref
  7. A. N. Bekrenev and E. L. Morozova, Fiz. Khim. Obr. Mater., No. 6: 117 (1991) (in Russian).
  8. N. F. Bolkhovitinov, Metalloved. Termich. Obr., No. 6: 505 (1965) (in Russian).
  9. Diagrammy Sostoyaniya Dvoynykh Metallicheskikh Sistem [The Diagrams of Binary Metallic Systems] (Ed. N. Lyakishev) (Moscow: Mashinostroenie: 1997), vol. 2 (in Russian).
  10. D. I. Anpilogov and V. V. Girzhon, Ukrayins'kyy Fizychnyy Zhurnal, 42, No. 3: 301 (1997) (in Ukrainian).
  11. V. A. Lobodyuk and E. I. Estrin, Martensitnoe Prevrashchenie [Martensitic Transformation] (Moscow: Fizmatlit: 2009) (in Russian).
  12. S. V. Kayukov, A. A. Gusev, G. V. Guseva, E. G. Zaychikov, and I. G. Nesterov, Fiz. Khim. Obr. Mater., No. 6: 5 (2009) (in Russian).
  13. S. P. Alisova, Yu. K. Kovneristyy, and B. P. Budberg, Metallovedenie i Obrabotka Tsvetnykh Metallov [Metallurgical Science and Processing of Non-Ferrous Metals] (Moscow: Nauka: 1992), p. 230 (in Russian).
  14. A. I. Rusanov and F. Ch. Gudrich, Sovremennaya Teoriya Kapillyarnosti [Modern Theory of Capillarity] (Leningrad: Khimiya: 1980) (in Russian).
  15. S. S. Kiparisov, Yu. V. Levinskiy, and A. P. Petrov, Karbid Titana: Poluchenie, Svoystva, Primenenie [Titanium Carbide: Production, Properties, Application] (Moscow: Metallurgiya: 1987) (in Russian).