Processing math: 100%

Properties of the Soft-Magnetic Nanocrystalline Fe–B–P–Nb–Cr Alloys with a High Saturation Induction

Ye. I. Yarmoshchuk1, T. M. Mika2, A. V. Nosenko2, G. M. Zelinska2, M. P. Semen’ko1

1Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
2G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 06.04.2017. Download: PDF

The magnetic properties of amorphous Fe–B–P–Nb–Cr alloys after their nanocrystallization are investigated. Due to optimizing the chemical composition and selecting heat-treatment conditions, in such alloys, the high values of saturation induction BS = 1.37 T and initial magnetic permeability μ10 = 7800 units as well as the low values of dynamical coercivity HC = 3 А/m are achieved at low core losses for magnetization reversal: P10/1000 5 W/kg and P10/400 1.5 W/kg.

Key words: soft-magnetic nanocrystalline alloys, Nb and Cr impurities, core loss, saturation magnetization, magnetic permeability.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i05/0645.html

DOI: https://doi.org/10.15407/mfint.39.05.0645

PACS: 07.55.-w, 61.43.Dq, 75.50.Bb, 75.50.Kj, 75.50.Tt, 81.40.Ef

Citation: Ye. I. Yarmoshchuk, T. M. Mika, A. V. Nosenko, G. M. Zelinska, and M. P. Semen’ko, Properties of the Soft-Magnetic Nanocrystalline Fe–B–P–Nb–Cr Alloys with a High Saturation Induction, Metallofiz. Noveishie Tekhnol., 39, No. 5: 645—655 (2017) (in Ukrainian)


REFERENCES
  1. M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci., 44: 291 (1999). Crossref
  2. R. Hasegawa, Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process., 375–377: 90 (2004). Crossref
  3. A. Inoue, F. L. Kong, Q. K. Man, B. L. Shen, R. W. Li, and F. Al-Marzouki, J. Alloys Compd., 615, Supplement 1: S2 (2014). Crossref
  4. Y. Han, F. L. Kong, F. F. Han, A. Inoue, S. L. Zhu, E. Shalaan, and F. Al-Marzouki, Intermetallics, 76: 18 (2016). Crossref
  5. Obladnannya dlya Nadshvydkogo Okholodzhennya Rozplavu [Equipment for the Rapid Cooling of the Melt], http://melta.com.ua/?page_id=34 (in Ukrainian).
  6. A. Nosenko, O. Rudenko, T. Mika, I. Yevlash, O. Semyrga, and V. Nosenko, Nanoscale Res. Lett., 11: 70 (2016). Crossref
  7. A. Nosenko, T. Mika, O. Rudenko, Ye. Yarmoshchuk, and V. Nosenko, Nanoscale Res. Lett., 10: 136, (2015). Crossref
  8. Handbook of Thermal Analysis and Calorimetry: Applications to Inorganic and Miscellaneous Materials (Eds. M. E. Brown and P. K. Gallagher), vol. 2, p. 1 (2003).
  9. Y. Takahara and H. Matsuda, Mater. Trans., 36, No. 7: 903 (1995). Crossref
  10. M. D. V. Srila Litha and B. Bhanu Prasad, Proc. Mater. Sci., 10: 609 (2015).
  11. H. Matsumoto, A. Urata, Y. Yamada, and A. Inoue, J. Alloys Compd., 504: 1098 (2010). Crossref
  12. F. L. Kong, Y. Han, X. H. Wang, F. F. Han, S. L. Zhu, and A. Inoue, J. Alloys Compd., 707: 195 (2017). Crossref
  13. S. L. Ratushnyak and N. O. Gonchukova, Glass Phys. Chem., 40, Iss. 5: 496 (2014). Crossref
  14. H. Matsumoto, A. Urata, Y. Yamada, and S. Yoshida, Nec. Tech. J., 2, No. 4: 66 (2007).
  15. G. Herzer, J. Magn. Magn. Mater., 294: 99 (2005). Crossref
  16. NATO Sci. Ser. II: Math. Phys. Chem. Vol. 184 (Eds. B. Idzikowski, P. Svec, and M. Miglierini) (Dordrecht: Kluwer Academic: 2005).