Properties of the Soft-Magnetic Nanocrystalline Fe–B–P–Nb–Cr Alloys with a High Saturation Induction

Ye. I. Yarmoshchuk$^{1}$, T. M. Mika$^{2}$, A. V. Nosenko$^{2}$, G. M. Zelinska$^{2}$, M. P. Semen’ko$^{1}$

$^{1}$Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
$^{2}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv-142, Ukraine

Received: 06.04.2017. Download: PDF

The magnetic properties of amorphous Fe–B–P–Nb–Cr alloys after their nanocrystallization are investigated. Due to optimizing the chemical composition and selecting heat-treatment conditions, in such alloys, the high values of saturation induction $B_{S}$ = 1.37 T and initial magnetic permeability $\mu_{10}$ = 7800 units as well as the low values of dynamical coercivity $H_{C}$ = 3 А/m are achieved at low core losses for magnetization reversal: $P_{10/1000} \cong$ 5 W/kg and $P_{10/400} \cong$ 1.5 W/kg.

Key words: soft-magnetic nanocrystalline alloys, Nb and Cr impurities, core loss, saturation magnetization, magnetic permeability.



PACS: 07.55.-w, 61.43.Dq, 75.50.Bb, 75.50.Kj, 75.50.Tt, 81.40.Ef

Citation: Ye. I. Yarmoshchuk, T. M. Mika, A. V. Nosenko, G. M. Zelinska, and M. P. Semen’ko, Properties of the Soft-Magnetic Nanocrystalline Fe–B–P–Nb–Cr Alloys with a High Saturation Induction, Metallofiz. Noveishie Tekhnol., 39, No. 5: 645—655 (2017) (in Ukrainian)

  1. M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci., 44: 291 (1999). Crossref
  2. R. Hasegawa, Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process., 375–377: 90 (2004). Crossref
  3. A. Inoue, F. L. Kong, Q. K. Man, B. L. Shen, R. W. Li, and F. Al-Marzouki, J. Alloys Compd., 615, Supplement 1: S2 (2014). Crossref
  4. Y. Han, F. L. Kong, F. F. Han, A. Inoue, S. L. Zhu, E. Shalaan, and F. Al-Marzouki, Intermetallics, 76: 18 (2016). Crossref
  5. Obladnannya dlya Nadshvydkogo Okholodzhennya Rozplavu [Equipment for the Rapid Cooling of the Melt], (in Ukrainian).
  6. A. Nosenko, O. Rudenko, T. Mika, I. Yevlash, O. Semyrga, and V. Nosenko, Nanoscale Res. Lett., 11: 70 (2016). Crossref
  7. A. Nosenko, T. Mika, O. Rudenko, Ye. Yarmoshchuk, and V. Nosenko, Nanoscale Res. Lett., 10: 136, (2015). Crossref
  8. Handbook of Thermal Analysis and Calorimetry: Applications to Inorganic and Miscellaneous Materials (Eds. M. E. Brown and P. K. Gallagher), vol. 2, p. 1 (2003).
  9. Y. Takahara and H. Matsuda, Mater. Trans., 36, No. 7: 903 (1995). Crossref
  10. M. D. V. Srila Litha and B. Bhanu Prasad, Proc. Mater. Sci., 10: 609 (2015).
  11. H. Matsumoto, A. Urata, Y. Yamada, and A. Inoue, J. Alloys Compd., 504: 1098 (2010). Crossref
  12. F. L. Kong, Y. Han, X. H. Wang, F. F. Han, S. L. Zhu, and A. Inoue, J. Alloys Compd., 707: 195 (2017). Crossref
  13. S. L. Ratushnyak and N. O. Gonchukova, Glass Phys. Chem., 40, Iss. 5: 496 (2014). Crossref
  14. H. Matsumoto, A. Urata, Y. Yamada, and S. Yoshida, Nec. Tech. J., 2, No. 4: 66 (2007).
  15. G. Herzer, J. Magn. Magn. Mater., 294: 99 (2005). Crossref
  16. NATO Sci. Ser. II: Math. Phys. Chem. Vol. 184 (Eds. B. Idzikowski, P. Svec, and M. Miglierini) (Dordrecht: Kluwer Academic: 2005).