Influence of Shear Component of Load Under the Friction on a Structure–Phase State and Wear of Surface Layer of Steel 1045

B. M. Mordyuk$^{1}$, O. O. Mikosyanchyk$^{2}$

$^{1}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Aviation University, 1 Cosmonaut Komarov Ave., 03058 Kyiv, Ukraine

Received: 03.05.2017; final version - 30.05.2017. Download: PDF

The influence of load shear component under the friction on both the microstructure and the phase state of the surface layers of 1045 steel is studied. As established by x-ray analysis, the increase in shear-stress component $Р_{SH}$ results in reduction of size of coherent scattering areas (20–50 nm) and in changes of the lattice microstrains of ferrite, and in the formation of residual compressive macrostresses (300–700 MPa). The growth in $Р_{SH}$ (from 3% to 40% of the normal component) results in significant increase of microhardness of the surface layer of 100–250 $\mu$m thickness. The wear magnitude depends not only on the grain size and hardness, but also on the phase composition of the surface layers formed by mechanochemical reactions on the contact surfaces during the friction process.

Key words: shear-stress component, surface layer, microstructure, microhardness, wear, steel 1045.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i06/0795.html

DOI: https://doi.org/10.15407/mfint.39.06.0795

PACS: 62.20.Qp, 68.35.bd, 68.35.Dv, 68.35.Fx, 68.35.Gy, 68.35.Rh, 81.40.Pq

Citation: B. M. Mordyuk and O. O. Mikosyanchyk, Influence of Shear Component of Load Under the Friction on a Structure–Phase State and Wear of Surface Layer of Steel 1045, Metallofiz. Noveishie Tekhnol., 39, No. 6: 795—813 (2017) (in Ukrainian)


REFERENCES
  1. Y. Estrin and A. Vinogradov, Acta Mater., 61: 782 (2013). Crossref
  2. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci., 53: 893 (2008). Crossref
  3. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci., 45: 103 (2000). Crossref
  4. R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci., 51: 881 (2006). Crossref
  5. A. L. Ortiz, J.-W. Tian, L. L. Shaw, and P. K. Liaw, Scr. Mater., 62: 129 (2010). Crossref
  6. L. Zhou, G. Liu, X. L. Ma, and K. Lu, Acta Mater., 56: 78 (2008). Crossref
  7. B. N. Mordyuk and G. I. Prokopenko, Mater. Sci. Eng. A, 437: 396 (2006). Crossref
  8. B. N. Mordyuk and G. I. Prokopenko, J. Sound Vib., 308: 855 (2007). Crossref
  9. B. N. Mordyuk and G. I. Prokopenko, Handbook of Mechanical Nanostructuring (Weinheim: Wiley-VCH: 2015), p. 417. Crossref
  10. B. N. Mordyuk, O. P. Karasevskaya, G. I. Prokopenko, and N. I. Khripta, Surf. Coat. Technol., 210: 54 (2012). Crossref
  11. J. Moering, X. Ma, G. Chen, P. Miao, G. Li, G. Qian, S. Mathaudhu, and Y. Zhu, Scr. Mater., 108: 100 (2015). Crossref
  12. B. I. Kosteckiy, I. G. Nosovskiy, and A. K. Karaulov, Poverkhnostnaya Prochnost Materialov pri Trenii (Kiev: Tekhnika: 1976) (in Russian).
  13. K. Elalem, D. Y. Li, M. J. Anderson, and S. Chiovelli, ASTM STP, 1339: 90 (2001).
  14. Q. Chen and D. Y. Li, Wear, 259: 1382 (2005). Crossref
  15. I. L. Solodova, Strukturnye Prevrashcheniya pri Trenii i Iznosostoykost Zakalennykh Uglerodistykh Staley (Thesis of Disser. … for the Degree of Cand. Techn. Sci.) (Ekaterinburg: 2006) (in Russian).
  16. V. A. Balakin, Wear, 72: 133 (1981). Crossref
  17. K. E. Nurnberg, G. Nurnberg, M. Golle, and H. Hoffmann, Wear, 265: 1801 (2008). Crossref
  18. O. O. Mikosyanchyk, O. I. Zaporozhets, and R. H. Mnatsakanov, Problemy Trybologii, No. 4: 42 (2015) (in Ukrainian).
  19. O. Mikosyanchyk, R. Mnatsakanov, A. Zaporozhets, and R. Kostynik, Eastern-European Journal of Enterprise Technol., No. 4/1 (82): 24 (2016). Crossref
  20. T. M. A. Al-quraan, O. O. Mikosyanchik, and R. G. Mnatsakanov, Mech. Eng. Research, 6, No. 2: 48 (2016). Crossref
  21. O. O. Mikosyanchik, Device for Evaluation of Tribotechnical Characteristics of the Triboelements, UA Patent No. 88748 (Bul. No. 6, 25.03.14) (in Ukrainian).
  22. S. M. Hsu, M. C. Shen, E. E. Klaus, H. S. Cheng, and P. I. Lacey, Wear, 175: 209 (1994). Crossref
  23. B. E. Gurskii and A. V. Chichinadze, Trenie i Iznos, 28: 395 (2007) (in Russian).
  24. C. Suryanarayana, Prog. Mater. Sci., 46: 1 (2001). Crossref
  25. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, Rentgenovskiy i Electronnoopticheskiy Analiz (Moscow: Metallurgiya: 1970) (in Russian).
  26. Y. I. Babei, Mater. Sci., 11: 129 (1975). Crossref
  27. H. Nykyforchyn, V. Kyryliv, and O. Maksymiv, Nanoscale Research Lett., 12: 150 (2017). Crossref
  28. V. I. Kyryliv, Mater. Sci., 35: 853 (1999). Crossref
  29. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 103: 761 (2016). Crossref
  30. M. O. Vasyliev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 37, No. 9: 1269 (2015) (in Ukrainian). Crossref
  31. I. M. Lyubarskyi, Trenie i Iznos, 1, No. 2: 280 (1980) (in Russian).
  32. O. O. Mikosyanchik, Problemy Tertya ta Znoshuvannya, No. 1: 65 (2017) (in Russian).
  33. B. N. Mordyuk, O. P. Karasevskaya, and G. I. Prokopenko, Mater. Sci. Eng. A, 559: 453 (2013). Crossref
  34. Z. Pu, S. Yang, G.-L. Song, O. W. Dillon Jr., D. A. Puleo, and I. S. Jawahir, Scr. Mater., 65: 520 (2011). Crossref
  35. L. Zhou, G. Liu, Z. Han, and K. Lu, Scr. Mater., 58: 445 (2008). Crossref
  36. B. N. Mordyuk, G. I. Prokopenko, Yu. V. Milman, M. O. Iefimov, K. E. Grinkevych, A. V. Sameljuk, and I. V. Tkachenko, Wear, 319: 84 (2014). Crossref
  37. B. N. Mordyuk, V. V. Silbershmidt, G. I. Prokopenko, Yu. V. Nesterenko, and M. O. Iefimov, Mater. Characterizations, 61: 1126 (2010). Crossref
  38. Yu. V. Milman, K. E. Grinkevych, S. I. Chugunova, W. Lojkowski, M. Djahanbakhsh, and H. J. Fecht, Wear, 258: 77 (2005). Crossref