The Physical Nature of Resistive Switchings in Mesoscopic Contacts Based on the Complex Oxides of the Transition Metals

A. P. Shapovalov$^{1,2}$, V. P. Bloshchytskii$^{3}$, O. V. Gornostaeva$^{4,5}$, M. V. Zalutskii$^{4,5}$, O. A. Kordyuk$^{2,4}$

$^{1}$V. Bakul Institute for Superhard Materials, NAS of Ukraine, 2 Avtozavods’ka Str., UA-04074 Kyiv, Ukraine
$^{2}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$Donetsk National Technical University, 2 Shybankov Sqr., UA-85300 Pokrovs’k, Ukraine
$^{4}$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{5}$Vasyl’ Stus Donetsk National University, 21 600-richchya Str., UA-21021 Vinnytsia, Ukraine

Received: 18.07.2017. Download: PDF

A new mechanism of resistive switchings in the mesoscopic heterocontacts formed by a conventional-metal tip with a surface of bulk transition-metal oxide samples with a perovskite structure, which are conductors in their interior, is proposed. Based on the experimental data proving that the near-surface region of doped complex oxides is highly inhomogeneous with non-metallic conductivity, authors assume the presence of spontaneous polarization in it, even in the absence of an external electric field. Turning on the field will lead to a reorientation of mesoscopic electric dipoles in a field direction. In this case, the hysteresis of current–voltage characteristics is a result of the nonlinear coupling between the applied electric field and the electric charge inside the crystal structure. Experimental data are presented indicating that double-valued current–voltage curves are observed in the heterostructures with various perovskite materials.

Key words: mesoscopic structures, complex transition-metal oxides, near-surface region, electric dipoles, hysteresis.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i08/1005.html

DOI: https://doi.org/10.15407/mfint.39.08.1005

PACS: 62.23.St, 68.47.Gh, 77.80.bg, 77.80.bn, 84.32.Dd

Citation: A. P. Shapovalov, V. P. Bloshchytskii, O. V. Gornostaeva, M. V. Zalutskii, and O. A. Kordyuk, The Physical Nature of Resistive Switchings in Mesoscopic Contacts Based on the Complex Oxides of the Transition Metals, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1005—1016 (2017) (in Russian)


REFERENCES
  1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford Univ. Press: 2001). Crossref
  2. P. W. Anderson and E. I. Blount, Phys. Rev. Lett., 14, No. 7: 217 (1965). Crossref
  3. Y. Shi, Y. Guo, X. Wang, A. J. Princep, D. Khalyavin, P. Manuel, Y. Michiue, A. Sato, K. Tsuda, S. Yu, M. Arai, Y. Shirako, M. Akaogi, N. Wang, K. Yamaura, and A. T. Boothroyd, Nature Mater., 12, No. 11: 1024 (2013). Crossref
  4. R. E. Cohen, Nature, 358, No. 6382: 136 (1992). Crossref
  5. Z. Viskadourakis, I. Radulov, A. P. Petrović, S. Mukherjee, B. M. Andersen, G. Jelbert, N. S. Headings, S. M. Hayden, K. Kiefer, S. Landsgesell, D. N. Argyriou, and C. Panagopoulos, Phys. Rev. B, 85, No. 21: 214502 (2012). Crossref
  6. Z. Viskadourakis, S. S. Sunku, S. Mukherjee, B. M. Andersen, T. Ito, T. Sasagawa, and C. Panagopoulos, Sci. Rep., 5: 15268 (2015). Crossref
  7. D. Mihailović and I. Poberaj, Physica C, 185–189: 781 (1991). Crossref
  8. M. Truchly, T. Plecenik, E. Zhitlukhina, M. Belogolovskii, M. Dvoranova, P. Kus, and A. Plecenik, J. Appl. Phys., 120, No. 18: 185302 (2016). Crossref
  9. V. M. Svistunov, M. A. Belogolovskii, and A. I. Khachaturov, Phys.-Usp., 36, No. 2: 65 (1993) (in Russian). Crossref
  10. M. Belogolovskii, Centr. Eur. J. Phys., 7, No. 2: 304 (2009). Crossref
  11. J. F. Scott, Science, 315, No. 5814: 954 (2007). Crossref
  12. A. Petrov, L. Alekseeva, A. Ivanov, V. Luchinin, A. Romanov, T. Chikev, and T. Nabatame, Nanoidustriya, No. 1 (63): 94 (2016) (in Russian).
  13. T. A. Prikhna, V. S. Melnikov, V. V. Kovylyaev, and V. E. Moshchil, J. Mater. Sci., 30, No. 14: 3662 (1995). Crossref
  14. A. Plecenik, M. Grajcar, P. Seidel, and S. Benacka, Studies of High Temperature Superconductors (Ed. A. Narlikar) (New York: Nova Sci. Publ.: 1996), vol. 20, p. 75.
  15. K. Kim and Y. Song, Integr. Ferroelectr., 61, No. 1: 3 (2004). Crossref
  16. J. Junquera and P. Ghosez, Nature, 422, No. 6931: 506 (2003). Crossref
  17. H. Mulaosmanovic, J. Ocker, S. Muller, U. Schroeder, J. Muller, P. Polakowski, S. Flachowsky, R. van Bentum, T. Mikolajick, and S. Slesazeck, ACS Appl. Mater. Interfaces, 9, No. 4: 3792 (2017). Crossref
  18. T. A. Prikhna, J. Rabier, A. Proult, X. Chaud, W. Gawalek, A. V. Vlasenko, J.-L. Soubeyroux, R. Tournier, F. Sandiumenge, Ya. M. Savchuk, V. E. Moshchil, P. A. Nagorny, N. V. Sergienko, V. S. Melnikov, S. Kraĉunovska, D. Litzkendorf, and S. N. Dub, Supercond. Sci. Technol., 17, No. 9: S515 (2004). Crossref
  19. X. Chaud, J. Noudem, T. Prikhna, Y. Savchuk, E. Haanappel, P. Diko, and C. P. Zhang, Physica C: Superconductivity, 469, No. 15: 1200 (2009). Crossref
  20. R. Yu. Babkin, O. V. Gornostaeva, K. V. Lamonova, S. M. Orel, A. M. Prudnikov, Yu. G. Pashkevich, O. G. Viagin, P. O. Maksimchuk, and Yu. V. Malyukin, J. Lumin., 186: 247 (2017). Crossref