Loading [MathJax]/jax/output/HTML-CSS/jax.js

Electrical Resistivity of the Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 Solid Solutions with Structure of AlB2 Type

M. P. Semen’ko, N. M. Bilyavina, O. I. Nakonechna

Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine

Received: 12.01.2017; final version - 26.09.2017. Download: PDF

Electrical properties (resistivity and temperature coefficient of resistivity) of the Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 solid solutions are studied using the model coatings deposited on mica substrate. Analysis of temperature dependences of the resistivity reveals that YGa2 compound as well as the solid solutions on its base possess a metallic conductivity. Substitution of a certain part of the gallium atoms in YGa2 compound belonging to AlB2-type structure with germanium, silicon or aluminium atoms leads to decrease of resistivity in the Ga Ge Si Al series that may be caused by both the nature of atoms themselves and technological parameters of coatings’ preparation (primarily, by their homogeneity).

Key words: intermetallics, electrical properties, crystal structure, x-ray diffraction.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i10/1299.html

DOI: https://doi.org/10.15407/mfint.39.10.1299

PACS: 61.05.cp, 61.66.Dk, 68.37.Hk, 72.15.Eb, 73.61.At, 81.15.Ef, 81.40.Rs

Citation: M. P. Semen’ko, N. M. Bilyavina, and O. I. Nakonechna, Electrical Resistivity of the Y(Ga,Al)2, Y(Ga,Si)2 and Y(Ga,Ge)2 Solid Solutions with Structure of AlB2 Type, Metallofiz. Noveishie Tekhnol., 39, No. 10: 1299—1306 (2017)


REFERENCES
  1. S. P. Yatsenko, A. A. Semyannikov, B. G. Semenov, and K. A. Chuntonov, J. Less-Common Met., 64: 185 (1979). Crossref
  2. R. Babu, K. Nagarajan, and V. Venugopal, J. Alloys Compd., 311: 200 (2000). Crossref
  3. M. Sekar, N. V. Chandra Shekar, R. Babu, P. Ch. Sahu, A. K. Sinha, A. Upadhyay, M. N. Singh, K. Ramesh Babu, S. Appalakondaiah, G. Vaitheeswaran, and V. Kanchana, J. Solid State Chemistry, 226: 11 (2015). Crossref
  4. M. V. Speka, V. Ya. Markiv, M. I. Zakharenko, and N. M. Belyavina, J. Alloys Compd., 348: 138 (2003). Crossref
  5. M. V. Speka, V. Ya. Markiv, M. I. Zakharenko, and N. M. Belyavina, Doklady Academii Nauk USSR, No. 10: 89 (2002) (in Russian).
  6. M. V. Speka, N. M. Belyavina, and V. Ya. Markiv, Vestnik Kievskogo Universiteta. Fiz.-Mat. Nauki, No. 2: 455 (1998) (in Russian).
  7. N. M. Belyavina, V. Ya. Markiv, and M. V. Speka, J. Alloys Compd., 283: 162 (1999). Crossref
  8. V. Markiv and N. Belyavina, Proc. of the Second International Scientific Conference 'Engineering and Functional Materials' (Oct. 14–16, 1997) (Lviv: Naukove Tovarystvo im. Shevchenka: 1997), p. 260 (in Russian).
  9. V. M. Dubyna, O. A. Bieloborodova, T. M. Zinevich, and N. V. Kotova, Coll. 6th International School-Conference 'Phase Diagrams in Materials Science' (Oct. 14–20, 2001) (Kyiv: PDMS VI: 2001), p. 89.
  10. M. I. Zakharenko, M. V. Speka, N. M. Belyavina, M. G. Babych, and V. Ya. Markiv, Metallofiz. Noveishie Tekhnol., 28, No. 3: 397 (2006) (in Russian).
  11. M. V. Speka, M. I. Zakharenko, M. G. Babich, N. M. Belyavina, and V. Ya. Markiv, J. Alloys Compd., 353: 17 (2003). Crossref