Influence of Atmospheric Oxygen on Composition and Kinetic Properties of Thin Films of Bismuth

M. V. Dobrotvorska$^{1}$, D. S. Orlova$^{2}$, O. I. Rogachova$^{2}$, O. G. Fedorov$^{1}$

$^{1}$Institute for Single Crystals, NAS of Ukraine, 60 Nauky Ave., 61178 Kharkiv, Ukraine
$^{2}$National Technical University ‘Kharkiv Polytechnic Institute’, 21 Kyrpychov Str., 61002 Kharkiv, Ukraine

Received: 12.09.2017. Download: PDF

The effect of air oxidation on the composition and properties of bismuth films with thicknesses $d$ = 10–200 nm is studied by using X-ray photoelectron spectroscopy and measuring electrical and galvanomagnetic properties of the films. The properties of two sets of freshly prepared films (with a protective EuS layer and without it) are compared with the properties of the same films after long-term air storage (during 9 years) at room temperature. As determined, a non-uniform in depth oxidation with the Bi$_2$O$_3$ formation takes place in the Bi films without protective covering. At the same time, the values of the Hall coefficient $R_H$ and magnetoresistance $\Delta\rho/\rho$ as well as their temperature dependences are not practically changed after air storage, whereas electrical conductivity $\sigma$ is decreased. For the thinner films, the more significant decrease in $\sigma$ is observed. On the other hand, after long-term air storage, in the films covered by europium sulphide, Bi is presented only in the metallic state, and $\sigma$, $R_H$ and $\Delta\rho/\rho$ remain practically changeless. As follows from the obtained results, in the case of presence of the protective covering, even long-term air storage at room temperature does not lead to a change either in the chemical composition or in the kinetic properties of bismuth films.

Key words: bismuth films, bismuth oxide, oxidation, electrical conductivity, Hall coefficient, magnetoresistance, X-ray photoelectron spectroscopy.



PACS: 64.75.Lm, 73.50.Jt, 73.50.Lw, 73.61.At, 75.47.Np, 81.07.Bc, 81.65.Mq

Citation: M. V. Dobrotvorska, D. S. Orlova, O. I. Rogachova, and O. G. Fedorov, Influence of Atmospheric Oxygen on Composition and Kinetic Properties of Thin Films of Bismuth, Metallofiz. Noveishie Tekhnol., 39, No. 10: 1307—1319 (2017) (in Russian)

  1. H. J. Goldsmid, Introduction to Thermoelectricity (Berlin–Heidelberg, Germany: Springer: 2016).
  2. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton–London–New York: CRC Press Taylor & Francis Group: 2006).
  3. Yu. F. Komnik, Fizika Metallicheskikh Plenok. Razmernye i Strukturnye Effekty [Physics of Metallic Films. Dimensional and Structural Effects] (Moscow: Atomizdat: 1979) (in Russian).
  4. S. A. Gangal and R. N. Karekar, Pramana—Journal of Physics, 17, No. 6: 453 (1981). Crossref
  5. R. Atkinson and E. Curran, Thin Solid Films, 128, Iss. 3–4: 333 (1985). Crossref
  6. J. L. Cohn and C. Uher, J. Appl. Phys., 65: 2045 (1989). Crossref
  7. D. H. Kim, S. H. Lee, J. K. Kim, and G. H. Lee, Appl. Surf. Sci., 252: 3525 (2006). Crossref
  8. V. M. Grabov, E. V. Demidov, V. A. Komarov, and M. M. Klimantov, Fizika Tverdogo Tela, 51, No. 4: 800 (2009) (in Russian).
  9. N. Marcano, S. Sangiao, M. Plaza, L. Pérez, A. Fernández Pacheco, R. Córdoba, M. C. Sánchez, L. Morellón, M. R. Ibarra, and J. M. De Teresa, Appl. Phys. Lett., 96: 082110 (2010). Crossref
  10. T. Romann, E. Anderson, S. Kallip, H. Mändar, L. Matisen, and E. Lust, Thin Solid Films, 518, Iss. 14: 3690 (2010). Crossref
  11. D. S. Orlova, E. I. Rogacheva, A. Yu. Sipatov, S. N. Grigorov, M. V. Dobrotvorskaya, and P. V. Mateychenko, Novi Tekhnologiyi. Naukovyy Visnyk KUEITU, 28, No. 2: 89 (2010) (in Russian).
  12. K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayesh, and F. Natali, Acta Cryst. B, 63, No. 4: 569 (2007). Crossref
  13. Y. W. Park, H. J. Jung, and S. G. Yoon, Sens. Actuators. B, 156: 709 (2011). Crossref
  14. A. A. Zav'yalova and R. M. Imamov, Kristallografiya, 16: 369 (1969) (in Russian).
  15. S. K. Sharma and S. L. Pandey, Thin Solid Films, 62, Iss. 2: 209 (1979). Crossref
  16. L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, Surf. Sci., 507: 480 (2002). Crossref
  17. R. B. Patil, J. B. Yadav, R. K. Puri, and V. Puri, J. Phys. Chem. Solids, 68, Iss. 4: 665 (2007). Crossref
  18. S. Condurache-Bota, N. Tigau, A. P. Rambu, G. G. Rusu, and G. I. Rusu, Appl. Surf. Sci., 257: 10545 (2011). Crossref
  19. S. Cho, A. DiVenere, G. K. Wong, J. B. Ketterson, J. R. Meyer, and C. A. Hoffman, Solid State Commun., 102, No. 9: 673 (1997).. Crossref
  20. E. I. Rogacheva, S. N. Grigorov, O. N. Nashchekina, S. G. Lyubchenko, and M. S. Dresselhaus, Appl. Phys. Lett., 82, No. 15: 2628 (2003). Crossref
  21. E. I. Rogacheva, S. N. Grigorov, I. M. Krivulkin, A. Yu. Sipatov, V. V. Volobuev, A. G. Fedorov, and I. I. Chernova, Proc. of 12th Int. Symp. on Thin Films in Electronics (Apr. 23-–27, 2001) (Kharkiv: NSC KhIPT, IPC 'Contrast' Publ.: 2001), p. 6 (in Russian).
  22. E. I. Rogacheva, S. G. Lyubchenko, and M. S. Dresselhaus, Thin Solid Films, 516, No. 10: 3411 (2008). Crossref
  23. E. I. Rogacheva, S. G. Lyubchenko, and A. A. Drozdova, Microelectronics Journal, 40: 821 (2009). Crossref
  24. E. I. Rogacheva, S. G. Lyubchenko, O. N. Nashchekina, A. V. Meriuts, and M. S. Dresselhaus, Microelectronics Journal, 40, No. 4: 728 (2009). Crossref
  25. I. V. Kozhevnikov and A. V. Vinogradov, Trudy Fizicheskogo Instituta im. P. N. Lebedeva, 196: 62 (1989) (in Russian).
  26. I. V. Kozhevnikov and A. V. Vinogradov, Journal of Russian Laser Research, 16, Iss. 4: 343 (1995). Crossref