Method of Determination of Changes of Plastic Properties of a Metal Plate by Means of Frequencies of Modes of the String Stretched above It

Yu. Yo. Striletskyy$^{1}$, V. A. Rovinskyy$^{2}$

$^{1}$Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Str., 76019 Ivano-Frankivsk, Ukraine
$^{2}$Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine

Received: 09.09.2017. Download: PDF

The method is proposed to study deformation creep and relaxation of a metal by their influence on the vibrational modes of string stretched between two points rigidly fixed on the investigated plate. A device for supporting the vibrations of the stretched metal string is developed. An algorithm is proposed for calculating a dimensionless coefficient, which describes the degree of influence of plasticity properties of a metal on the modes’ frequencies of a strained string. The mentioned coefficient makes it possible to evaluate changes in the plasticity properties of the metal without usage of etalon studies. The practical investigations of the influence of the plastically deformed area of steel samples on the frequencies of the vibrational modes of the strained string are carried out. As determined, the structural changes in the St3 steel are estimated by the higher value of proposed coefficient than the changes in the pipe 09G2FB steel.

Key words: vibrations of the strained string, vibrating modes of string, viscoelastic deformation, creep deformation of a metal, deformation relaxation of a metal.



PACS: 07.10.-h, 46.40.-f, 46.70.Hg, 46.80.+j, 62.20.F-, 62.20.Hg, 62.30.+d, 81.70.-q

Citation: Yu. Yo. Striletskyy and V. A. Rovinskyy, Method of Determination of Changes of Plastic Properties of a Metal Plate by Means of Frequencies of Modes of the String Stretched above It, Metallofiz. Noveishie Tekhnol., 39, No. 10: 1377—1393 (2017) (in Ukrainian)

  1. I. Shatskii and V. Perepichka, Prikl. Mekhanika Tekhn. Fizika, 54, No. 6: 175 (2013) (in Russian).
  2. I. Shatskyi and V. Perepichka, Proc. 22nd Int. Sci. Conf. 'Mechanika 2017' (May 19, 2017) (Kaunas, Lithuania: 2017), p. 348.
  3. I. P. Shats'kyi, O. M. Lyskanych, and V. A. Kornuta, Strength Mater., 48, No. 3: 469 (2016). Crossref
  4. A. S. Velichkovich, I. I. Popadyuk, and V. M. Shopa, Chem. Pet. Eng., 46, Iss. 9–10: 518 (2011). Crossref
  5. A. S. Velichkovich and T. M. Dalyak, Chem. Pet. Eng., 51, Iss. 3–4: 188 (2015). Crossref
  6. O. Vlasiy, V. Mazurenko, L. Ropyak, and O. Rogal, Eastern-Eur. J. Enterprise Technol., 1, No. 1(85): 25 (2017). Crossref
  7. I. Steliga, J. Grydzhuk, and A. Dzhus, Eastern-Eur. J. Enterprise Technol., 2, No. 7 (80): 20 (2016). Crossref
  8. K. G. Levchuk, V. M. Moisyshyn, I. V. Tsidylo, Metallofiz. Noveishie Tekhnol., 38, No. 12: 1655 (2016) (in Ukrainian). Crossref
  9. V. Moisyshyn and K. Levchuk, Oil Gas Sci. Technol., 72, No. 5: 27-1 (2017). Crossref
  10. L. S. Saakiyan, A. P. Efremov, L. Ya. Ropyak, and A. V. Horbatskyi, Fiz.-Khim. Mekhanika Mater., 23, No. 3: 40 (1987) (in Russian).
  11. L. S. Saakiyan, A. P. Efremov, and L. Ya. Ropyak, Zashchita Metallov, 25, No. 2: 233 (1989) (in Russian).
  12. M. L. Bernshtein and V. A. Zaimovskiy, Structura i Mekhanicheskie Svoystva Metallov (Moscow: Metallurgiya: 1970) (in Russian).
  13. D. A. Collins, Povrezhdenie Materialov v Konstruktsiyakh. Analiz, Predskazanie, Predotvrashchenie (Moscow: Mir: 1984) (Russian translation).
  14. R. Lakes, Viscoelasticity Notes Adapted from Viscoelastic Materials,
  15. O. Scott-Emuakpor, T. George, C. Cross, and M.-H. H. Shen, J. Strain Anal. Eng. Des., 45, Iss. 4: 275 (2010). Crossref
  16. S. K. Paul, N. Stanford, A. Taylor, and T. Hilditch, Int. J. Fatigue, 80: 341 (2015). Crossref
  17. Prochnost. Ustoychivost. Kolebaniya: Spravochnik (Eds. I. A. Birger and Ya. G. Panovko) (Moscow: Mashinostroenie: 1968), vol. 3 (in Russian).
  18. K. G. Levchuk, SOCAR Proc., Iss. 2: 23 (2017) (in Russian). Crossref
  19. Yu. Yo. Striletskyy, Metody ta Prylady Kontrolyu Yakosti, No. 37: 79 (2016) (in Ukrainian).
  20. V. V. Panasyuk, Mekhanika Ruynuvannya i Mitsnist Materialiv (Lviv: Fiz.-Mekhan. Instytut im. G. V. Karpenka NAN Ukrayiny: 2001), vol. 5 (in Ukrainian).
  21. H. Lamb, Dinamicheskaya Teoriya Zvuka [The Dynamical Theory of Sound] (Moscow: Gos. Izd. Fiz.-Mat. Lit.: 1960) (Russian translation).
  22. F. S. Crawford, Jr., Volny [Waves] (Moscow: Nauka: 1984) (Russian translation).
  23. Ya. G. Panovko, Vvedenie v Teoriyu Mekhanicheskikh Kolebaniy (Moscow: Nauka: 1991) (in Russian).
  24. G. E. Mase, Teoriya i Zadachi Mekhaniki Sploshnykh Sred [Theory and Problems of Continuum Mechanics] (Moscow: Mir: 1974) (Russian translation).
  25. Mobility Analogy,
  26. H. A. C. Tilmans, J. Micromech. Microeng., 6, No. 3: 359 (1996). Crossref
  27. I. S. Gonorovskiy, Radiotechnicheskie Tsepi i Signaly (Moscow: Radio i Svyaz: 1986) (in Russian).
  28. GOST 1497-84. Metally. Metody Ispytaniy na Rastyazhenie (Moscow: IPK Standartov: 1986) (in Russian).