Influence of Admixtures of Si, Fe, Ti on Temperature and Kinetics of Dissociation of MgH$_2$ Obtained by Reactive Mechanical Alloyage

O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, O. Yu. Koval

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 28.08.2017. Download: PDF

The mechanical alloy MА (Mg + 5% wt. Si + 5% wt. Fe + 2% wt. Ti) is synthesized by the method of reactive mechanical alloyage (RMA). At hydrogen pressure of 0.1 MPa, the hydrogen capacity, thermal stability, and kinetics of hydrogen desorption from the MgH$_2$ hydride phase obtained by means of the MA are studied with the use of thermal desorption spectroscopy. As determined, the addition of Si, Ti, and Fe to magnesium leads to a significant improvement in the kinetics of hydrogen desorption from the MgH$_2$ hydride phase obtained by RMA. Due to this alloying, the decrease in the thermodynamical stability of MgH$_2$ is not revealed. Hydrogen capacity of MА after reactive grinding for 20 hours is found to be equal to 5.6% wt. and after the first cycles of hydrogen sorption–desorption—to 5.1% wt.

Key words: sorption–desorption kinetics, hydrogen-sorption properties, mechanical alloy, thermal stability, thermodesorption spectroscopy.

URL: http://mfint.imp.kiev.ua/en/abstract/v39/i11/1557.html

DOI: https://doi.org/10.15407/mfint.39.11.1557

PACS: 61.72.Ff, 61.72.S-, 68.43.Mn, 68.43.Nr, 81.07.Bc, 81.20.Ev, 81.20.Wk, 88.30.rd

Citation: O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and O. Yu. Koval, Influence of Admixtures of Si, Fe, Ti on Temperature and Kinetics of Dissociation of MgH$_2$ Obtained by Reactive Mechanical Alloyage, Metallofiz. Noveishie Tekhnol., 39, No. 11: 1557—1571 (2017) (in Ukrainian)


REFERENCES
  1. J. Huot, G. Liang, and R.Schulz, Appl. Phys., A, 72:187 (2001). Crossref
  2. C. Shang, M. Bououdina, and Y. Song, Int. J. Hydrogen Energy, 29: 73 (2004). Crossref
  3. V. D. Dobrovolsky, O. G. Ershova, Yu. M. Solonin, O. Y, Khyzhun, and V. Paul-Boncour, J. Alloys Compd., 465: 177 (2008). Crossref
  4. S. Doppi, T. Spassov, G. Barkhordarian, M. Dorngeim, T. Klassen, S. Surinach, and M. Baro, J. Alloys Compd., 404–406: 27 (2005). Crossref
  5. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, O. Y. Khyzhun, and A. Yu. Koval, J. Alloys Compd., 464: 212 (2008). Crossref
  6. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, Carbon Nanomaterials in Clean Energy Hydrogen Systems (NATO Science for Peace and Security Programme) (Dordrecht: Springer: 2008), p. 429.
  7. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, J. Mater. Sci., 51, No. 4: 457 (2016). Crossref
  8. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and A. Yu. Koval, Vidnovlyuvana Energetika, 3: 5 (2015) (in Ukrainian).
  9. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, O. Y. Khyzhun, and A. Yu. Koval, Materials Chemistry and Physics, 162: 408 (2015). Crossref
  10. V. D. Dobrovolsky, O. G. Ershova, and Yu. M. Solonin, Hydrogen in the Alternative Power Industry and Novel Technologies, 1: 136 (2015) (in Ukrainian).
  11. V. D. Dobrovolsky, O. G. Ershova, Yu. M. Solonin, and O. Y, Khyzhun, Powder Metallurgy & Metal Ceramics, 55, No. 7: 477 (2016). Crossref
  12. M. Polanski and J. Bystrzycki, Int. J. Hydrogen Energy, 34: 7692 (2009). Crossref
  13. A-L. Chaudhary, M. Paskevicius, D. Sheppard, and C. Buckley, J. Alloys Compd., 623:109 (2015). Crossref
  14. M. Shimada, H. Tamaki, E. Higuchi, and H. Inoue, J. Mater. Chemical Eng., 2, No. 3: 64 (2014).
  15. M. Tanniru, D. Slattery, and F. Ebrahimi, Int. J. Hydrogen Energy, 35: 3555 (2010). Crossref
  16. C. Zhou, Zh. Z. Fang, J. Lu, X. Luo, Ch. Ren, P. Fan, Ya. Ren, and X. Zhang, J. Phys. Chem. C, 118: 11526 (2014). Crossref
  17. F. Luo, H. Wang, L. Ouyang, M. Zeng, J. Liu, and M. Zhu, Int. J. Hydrogen Energy, 38: 10912 (2013). Crossref
  18. L. Ouyang, Z. Cao, H. Wang, J. Liu, D. Sun, Q. Zhang, and M. Zhu, J. Alloys Compd., 586: 113 (2014). Crossref
  19. Z. Cao, L. Ouyang, Y. Wu, H. Wang, J. Liu, F. Fang, D. Sun, Q. Zhang, and M. Zhu, J. Alloys Compd., 623: 354 (2015). Crossref
  20. Z. Min, L. Yanshan, L. Ouyang, and H. Wang, Materials, 6: 4654 (2013). Crossref
  21. V. D. Dobrovolsky, O. G. Ershova, O. Y. Khyzhun, and Yu. M. Solonin, J. Current Physical Chemistry, 4, No. 1: 106 (2014). Crossref
  22. V. D. Dobrovolsky, O. G. Ershova, and Yu. M. Solonin, Vidnovlyuvana Energetika, No. 1: 14 (2015) (in Ukrainian).
  23. V. D. Dobrovolsky, O. Y. Khyzhun, A. K. Sinelnichenko, O. G. Ershova, and Yu. M. Solonin, J. of Electron Spectroscopy and Related Phenomena, 215: 28 (2017). Crossref