Influence of Crystallographic Orientation on Regularities of Size Effect under a Tension of a Nanowire of Molybdenum

S. О. Kotrechko, O. V. Ovsyannikov, V. V. Lidych

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 08.12.2016; final version - 08.01.2018. Download: PDF

The influence of diameter of the Mo single-crystal nanowires on their strength for the three crystallographic orientations [100], [110] and [111] at temperatures of 77 and 300 K is revealed by means of the use of molecular-dynamic simulations. The existence of size effect in samples with diameter less than 4 nm is discovered. For cylindrical nanospecimen with the [100] orientation, size effect consists in the increase of strength by 17% with sample diameter decreasing from 4 to 1 nm. At the same time, when these nanospecimens are stretched along the [110] and [111] directions, an anomalous size effect is observed that manifests itself in a strength decreasing up to 14%. As shown, the reason for existence of these opposite tendencies in the manifestation of size effect is formation of different types of defects in nanosize specimens, namely, non-equilibrium twins under tension along the [100] direction and non-equilibrium dislocations under tension along the [110] and [111] directions.

Key words: b.c.c. nanowires, strength, size effect, local instability, surface tension.



PACS: 61.72.Bb, 62.20.F-,, 62.23.Hj, 62.25.Mn, 81.07.Gf, 83.10.Rs

Citation: S. О. Kotrechko, O. V. Ovsyannikov, and V. V. Lidych, Influence of Crystallographic Orientation on Regularities of Size Effect under a Tension of a Nanowire of Molybdenum, Metallofiz. Noveishie Tekhnol., 40, No. 2: 183—199 (2018) (in Russian)

  1. J. R. Greer, C. R. Weinberger, and W. Cai, Mater. Sci. Eng. A, 493, Iss. 1–2: 21 (2008). Crossref
  2. S. Brinckmann, J. Kim, and J. R. Greer, Phys. Rev. Lett., 100: 155502 (2008). Crossref
  3. H. Bei, S. Shim, G. M. Pharr, and E. P. George, Acta Mater., 56: 4762 (2008). Crossref
  4. J. Kim and J. R. Greer, Appl. Phys. Lett., 93: 101916 (2008). Crossref
  5. M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, Science, 305: 986 (2004). Crossref
  6. J. R. Greer, W. C. Oliver, and W. D. Nix, Acta Mater., 53: 1821 (2005). Crossref
  7. A. Rinaldi, P. Peralta, C. Friesen, and K. Sieradzki, Acta Mater., 56: 511 (2008). Crossref
  8. J. Kim, D. Jang, and J. R. Greer, Int. J. Plast., 28: 46 (2012). Crossref
  9. A. P. Shpak, S. O. Kotrechko, T. I. Mazilova, and I. M. Mikhailovskij, Sci. Technol. Adv. Mater., 10: 045004 (2009). Crossref
  10. T. I. Mazilova, V. A. Ksenofontov, V. N. Voyevodin, E. V. Sadanov, and I. M. Mikhailovskij, Philos. Mag. Lett., 91, No. 4: 304 (2011). Crossref
  11. Z. Yang, Z. Lu, and Y. Zhao, Comp. Mater. Sci., 46: 142 (2009). Crossref
  12. K. Gall, J. Diao, and M. L. Dunn, Nano Lett., 4, No. 12: 2431 (2004). Crossref
  13. H. A. Wu, Mech. Res. Commun., 33: 9 (2006). Crossref
  14. W. Lianga, D. J. Srolovitz, and M. Zhoua, J. Mech. Phys. Solids, 55, Iss. 8: 1729 (2007). Crossref
  15. A. M. Leach, M. McDowell, and K. Gall, Adv. Funct. Mater., 17: 43 (2007). Crossref
  16. S. O. Kotrechko, O. V. Ovsjannikov, and V. V. Lidych, Metallofiz. Noveishie Tekhnol., 34, No. 11: 1517 (2012) (in Ukrainian).
  17. G. Sainath and B. K. Choudhary, Comput. Mater. Sci., 111: 406 (2016). Crossref
  18. S. O. Kotrechko, A. N. Timoshevskij, S. O. Yablonovskii, I. M. Mikhailovskij, T. I. Mazilova, and V. V. Lidych, Procedia Mater. Sci., No. 3: 391 (2014).
  19. Yu. G. Gordienko, Metallofiz. Noveishie Tekhnol., 33, No. 9: 1217 (2011) (in Ukrainian).
  20. O. S. Gatsenko, O. E. Zasymchuk, P. O. Tesel'ko, S. G. Stirenko, and Yu. G. Gordienko, Metallofiz. Noveishie Tekhnol., 36, No. 9: 1207 (2014) (in Ukrainian). Crossref
  21. M. P. Allen and T. J. Tildesley, Computer Simulation of Liquids (Oxford: Clarendon Press: 1991).
  22. M. W. Finnis and J. E. Sinclair, Philos. Mag. A, 50, No. 45: 45 (1984). Crossref
  23. S. A. Kotrechko and Yu. Ya. Meshkov, Predel'naya Prochnost' [Ultimate Strength] (Kyiv: Naukova Dumka: 2009) (in Russian).
  24. J. K. Diao, K. Gall, M. L. Dunn, and J. A. Zimmerman, Acta Mater., 54: 643 (2006). Crossref
  25. H. S. Park and P. A. Klein, Phys. Rev. B, 75: 085408 (2007). Crossref
  26. S. A. Kotrechko, Yu. Ya. Meshkov, and A. V. Ovsyannikov, Deformatsiya i Razrushenie Materialov, No. 11: 2 (2009) (in Russian).
  27. P. Wang, W. Chou, A. Nie, Y. Huang, H. Yao, and H. Wang, J. Appl. Phys., 110: 093521 (2011). Crossref
  28. A. P. Shpak, S. A. Kotrechko, A. V. Filatov, and A. V. Ovsyannikov, Deformatsiya i Razrushenie Materialov, No. 11: 13 (2006) (in Russian).